Use Holder’s inequality in proving convexity of sum of exponentials

convex-analysisholder-inequalitylinear algebraoptimization

Let $f(\mathbf{x})=\sum_{k=1}^{n}e^{x_{k}}=e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}$ where $x:=\begin{bmatrix} x_{1}&\cdots&x_{n}\end{bmatrix}^{T}$

I want to prove that $f$ is convex. I thought about tackling this problem using the definition of convexity:
$$
f(\alpha\mathbf{x}+(1-\alpha)\mathbf{y})\leq\alpha f(\mathbf{x})+(1-\alpha)f(\mathbf{y})
$$

Here is my attempt:
\begin{align*}
f(\alpha\mathbf{x}+(1-\alpha)f(\mathbf{y})&=\sum_{k=1}^{n}e^{(\alpha x_{k}+(1-\alpha)y_{k})} \\
&=\sum_{k=1}^{n}(e^{x_{k}})^{\alpha}\cdot(e^{y_{k}})^{1-\alpha}
\end{align*}

If we let $u_{k}:=e^{x_{k}}$ and $v_{k}:=e^{y_{k}}$ we can reach that:
\begin{align*}
f(\alpha\mathbf{x}+(1-\alpha)f(\mathbf{y})&=\sum_{k=1}^{n}(e^{x_{k}})^{\alpha}\cdot(e^{y_{k}})^{1-\alpha}\\
&=\sum_{k=1}^{n}u_{k}^{\alpha}\cdot v_{k}^{1-\alpha}\\
&=\langle\mathbf{u}^{\alpha},\mathbf{v}^{1-\alpha}\rangle
\end{align*}

I thought of applying Holder's inequality in this step. For $p=\alpha$ and $q$ chosen so that $1/p +1/q = 1$ i.e., $q=\alpha/\alpha-1$

Eventually, this will lead me to the following:
$$
\begin{align}
\sum_{k=1}^{n}u^{\alpha}_{k}v_{k}^{1-\alpha}\;&\leqslant\;\|\mathbf{u}^{\alpha}\|_{p}\|\mathbf{v}^{1-\alpha}\|_{q}\nonumber\\
&=\;\left(\sum_{k=1}^{n}|u_{k}|^{\alpha\cdot\frac{1}{\alpha}}\right)^{\alpha}\left(\sum_{k=1}^{n}|v_{k}|^{(1-\alpha)\cdot\frac{1}{(1-\alpha)}}\right)^{1-\alpha}\nonumber\\
&=\;\left(\sum_{k=1}^{n}|u_{k}|\right)^{\alpha}\left(\sum_{k=1}^{n}|v_{k}|\right)^{1-\alpha} \nonumber\\
&=\;\|\mathbf{u}\|_{1}^{\alpha}\|\mathbf{v}\|_{1}^{1-\alpha}\\
\end{align}
$$

However, this approach did not lead to $\alpha f(\mathbf{x})+(1-\alpha)f(\mathbf{y})$.

I am looking for help in guiding me on how to fix this as I firmly believe that the Holder's inequality can work in proving convexity of $f$.

Best Answer

Actually the Holder inequality $$uv\le{1\over p}u^p+{1\over q}v^q, \ u,v\ge 0,\ q={p\over p-1}$$ can be applied, but for proving that $e^x$ is convex. Then we can use this to prove the claim as the function in OP will be a sum of $n$ convex functions. Concerning $e^x$ we have $$e^{\alpha x+(1-\alpha)y}= e^{\alpha x}e^{(1-\alpha)y}$$ Then for $p=\alpha^{-1},$ $u=e^{\alpha x},\ v=e^{(1-\alpha)y},$ by Holder inequality we get that $$e^{\alpha x}e^{(1-\alpha)y}\le \alpha e^x+(1-\alpha)e^y$$