Upper bound on $|\langle a,x \rangle \langle b,x \rangle – \langle x,x \rangle \langle a,b\rangle|$

hilbert-spacesinequalityinner-products

Let $H$ be a Hilbert space and $a,b,x$ be vectors in $H$.

I'm looking for a sharp upper bound on $|\langle a,x \rangle \langle b,x \rangle – \langle x,x \rangle \langle a,b\rangle|$.

By the triangle inequality and Cauchy Schwarz this is clearly bounded by $2\|a\|\|b\|\|x\|^2$.

I think this is quite brutal, is there a bound with a constant less than $2$ ?

I tried rewriting the quantity as $\langle \langle a,x \rangle b – \langle a,b \rangle x, x \rangle$ or $\langle \langle a,x \rangle x – \langle x,x \rangle a, b \rangle$ but I can't get an improved upper bound this way.

Best Answer

Let's prove that $\lvert \langle a,x \rangle \langle b,x \rangle - \langle x,x \rangle \langle a,b\rangle \lvert \le \lVert a \rVert \lVert b \rVert \lVert x \rVert^2$.

Without loss of generality, we can suppose that $\lVert a \rVert = \lVert b \rVert = \lVert x \rVert=1$. Now take an orthonormal basis $\{e_1, e_2, \dots\}$ of $H$ such that $a= \cos \theta e_1 + \sin \theta e_2$ and $b= \cos \theta e_1 - \sin \theta e_2$, where $0 \le \theta \le \frac{\pi}{2}$. We get

$$\begin{aligned} \langle a,x \rangle \langle b,x \rangle - \langle x,x \rangle \langle a,b\rangle &= (\cos \theta \langle e_1,x \rangle + \sin \theta \langle e_2,x \rangle)(\cos \theta \langle e_1,x \rangle - \sin \theta \langle e_2,x \rangle) - \cos 2\theta\\ &=\cos^2 \theta\langle e_1,x \rangle^2 - \sin^2 \theta \langle e_2,x \rangle^2 - \cos 2 \theta\\ &=(\langle e_1,x \rangle^2 + \langle e_2,x \rangle^2) \cos^2 \theta - \langle e_2,x \rangle^2 - \cos 2 \theta\\ &=\frac{\langle e_1,x \rangle^2 - \langle e_2,x \rangle^2}{2}-\left(1 - \frac{\langle e_1,x \rangle^2 + \langle e_2,x \rangle^2}{2}\right) \cos 2 \theta \end{aligned}$$

Even if it means swapping $a$ and $b$, we can suppose that $\lvert \langle e_1,x \rangle \rvert \ge \lvert \langle e_2,x \rangle \rvert$. The quantity above depends on $\theta$ and is positive and maximum for $\theta = \pi$, i.e. $b=-a$. In that case

$$\begin{aligned} \lvert \langle a,x \rangle \langle b,x \rangle - \langle x,x \rangle \langle a,b\rangle \lvert &\le 1 - \langle e_2,x \rangle^2 \le 1 \end{aligned}$$ and we get the inequality

$$\lvert \langle a,x \rangle \langle b,x \rangle - \langle x,x \rangle \langle a,b\rangle \lvert \le \lVert a \rVert \lVert b \rVert \lVert x \rVert^2$$ which is an equality if and only if $b= \pm a$ and $x$ is orthogonal to $a$.

Related Question