Upper bound of stopped Brownian motion

brownian motionconditional-expectationprobability theorystochastic-processesstopping-times

Let $\{B_t\}_t$ be a standard Brownian motion and $T$ be arbitrary stopping time, is it true that $\mathbb{E}[|B_1-B_{1\wedge T}|]\leq C\cdot P(T<\infty)$ for some constant $C$? Here $C$ should be a universal constant over all stopping time $T$.


I can obtain the upper bound $\mathbb{E}[|B_1-B_{1\wedge T}|]\leq 2\mathbb{E}[\sup_{t\in[0,1]}|B_t|]\triangleq M < \infty$ because $\sup_{t\in[0,1]}|B_t|$ is integrable. However, I am not sure how to make the upper bound involving $P(T<\infty)$ since on $\{T=\infty\}$, we have $\mathbb{E}[|B_1-B_{1\wedge T}|]=0$.

Best Answer

Unless mistaken on the event $T\geq 1$, we have $|B_1-B_{1\wedge T}|=0$, so we get $|B_1-B_{1\wedge T}|\leq 2.\sup_{t\in[0,1]}|B_t|$ so that :

$$\mathbb{E}[|B_1-B_{1\wedge T}|]=\mathbb{E}[|B_1-B_{1\wedge T}|.1_{T\leq 1}]$$ From Cauchy-Schwartz inequality we get : $$\leq 2.\mathbb{E}[\sup_{t\in[0,1]}|B_t|^2]^{1/2} P(T<1)^{1/2}\leq 2.\mathbb{E}[\sup_{t\in[0,1]}|B_t|^2]^{1/2} P(T<+\infty)^{1/2}$$

This is not far but not what you are looking for.

So here is another try supposing that $T$ follows law $\mathbb P_T(u)$. We can write : $$\mathbb{E}[|B_1-B_{1\wedge T}|]=\mathbb{E}[\int_0^\infty|B_1-B_{1\wedge u}|d\mathbb P_T(u)]$$ $$=\mathbb{E}[\int_0^1|B_1-B_{u}|d\mathbb P_T(u)]$$ $$=\int_0^1\mathbb{E}[|B_1-B_{u}|]d\mathbb P_T(u)$$ $$\leq \sup_{t\in [0,1]}\mathbb{E}[|B_1-B_{u}|]\int_0^1 d\mathbb P_T(u)$$ $$= \sup_{t\in [0,1]}\mathbb{E}[|B_1-B_{u}|]\mathbb P(T\leq 1)$$ $$\leq \sup_{t\in [0,1]}\mathbb{E}[|B_1-B_{u}|]\mathbb P(T< \infty)$$

Looks better now right ?

Related Question