Unitary and Hermitian matrices

linear algebramatrices

If I have a Hermitian matrix $A \in \mathbb{C}^{n \times n}$ and $E = E_n$ the identity matrix, how can I show that $(E-iA)^{-1}$ exists and $(E+iA)(E-iA)^{-1}$ is unitary?

That is $((E+iA)(E-iA)^{-1})^{-1} = ((E+iA)(E-iA)^{-1})^H$? I know Hermitian means that $A={\overline A}^T = A^H$.

Similarly, if I have a unitary matrix $B\in \mathbb{C}^{n \times n}$ with $(B+E)^{-1}$ existing, how does it follow that $-i(B-E)(B+E)^{-1}$ is Hermitian?

Best Answer

The eigenvalues of a Hermitian matrix are real (prove it). Thus $A+iE$ is invertible, because $-i$ is not an eigenvalue of $A$. But then $$ E-iA=-i(A+iE) $$ is invertible as well. Now compute \begin{align} \bigl((E+iA)(E-iA)^{-1}\bigr)\bigl((E+iA)(E-iA)^{-1}\bigr)^H &=(E+iA)(E-iA)^{-1}\bigl((E-iA)^{-1}\bigr)^H(E+iA)^H \\[6px] &=(E+iA)(E-iA)^{-1}(E+iA)^{-1}(E-iA) \\[4px] &=(E+iA)\bigl((E+iA)(E-iA)\bigr)^{-1}(E-iA) \\[4px] (\text{*}) &=(E+iA)\bigl((E-iA)(E+iA)\bigr)^{-1}(E-iA) \\[6px] &=(E+iA)(E+iA)^{-1}(E-iA)^{-1}(E-iA) \\[6px] &=E \end{align} The equality marked $(\text{*})$ is justified because $$ (E+iA)(E-iA)=E+A^2=(E-iA)(E+iA) $$

For the second case, you need to prove that $$ \bigl(-i(B-E)(B+E)^{-1}\bigr)^H=-i(B-E)(B+E)^{-1} $$ The left hand side can be rewritten as $$ i(B^H+E)^{-1}(B^H-E) $$ so you need to prove that $$ i(B^H+E)^{-1}(B^H-E)=-i(B-E)(B+E)^{-1} $$ which is equivalent to $$ (B^H-E)(B+E)=-(B^H+E)(B-E) $$ that only requires doing the operations on both sides. Justify each previous step.