Uniqueness of the representation of Ito processes for $G \in \mathcal{L}_2^\text{loc}$

probability theorystochastic-calculusstochastic-integralsstochastic-processes

Let $T > 0$. Let $(\Omega, \mathcal{F}, P, \{ \mathcal{F}_t \}_{t \in [0, T]})$ be a probability space with a filtration. We write
\begin{align*}
\mathcal{L}_2 &= \{ \Phi = \{ \Phi(t) \}_{t \in [0. T]} \mid \Phi \text{ is progressively measurable} \land E\left[ \int_0^T \lvert \Phi(t) \rvert^2 dt \right] < \infty \}, \\
\mathcal{L}_2^{\text{loc}} &= \{ \Phi = \{ \Phi(t) \}_{t \in [0. T]} \mid \Phi \text{ is progressively measurable} \land \int_0^T \lvert \Phi(t) \rvert^2 dt < \infty \text{ a.s.} \}, \\
\mathcal{L}_1^{\text{loc}} &= \{ \Phi = \{ \Phi(t) \}_{t \in [0. T]} \mid \Phi \text{ is progressively measurable} \land \int_0^T \lvert \Phi(t) \rvert dt < \infty \text{ a.s.} \}.
\end{align*}

Let $\{ X(t) \}_{t \in [0, T]}$ be an Ito process with the following representation.
\begin{align*}
X(t) &= X(0) + \int_0^t F(s) ds + \int_0^t G(s) dW(s) \\
&= X(0) + \int_0^t F'(s) ds + \int_0^t G'(s) dW(s). \tag{1}
\end{align*}

Here, $F, F' \in \mathcal{L}_1^{\text{loc}}$ and $G, G' \in \mathcal{L}_2^{\text{loc}}$. We want to prove that $F = F'$ a.s. and $G = G'$ a.s.

I know that $F = F'$ a.s. follows from the following argument. By (1), we have
\[
\int_0^t (F(s) – F'(s)) ds = \int_0^t (G'(s) – G(s)) dW(s).
\]
The right-hand side is a local martingale. So is the left-hand side. Thus $F – F' = 0$ a.s.

However, I am in trouble around proving $G = G'$ a.s. I know that if $G, G' \in \mathcal{L}_2$, the conclusion follows. This is explained in another question. How can we apply this for the $\mathcal{L}_2^{\text{loc}}$ version? Actually, I am not used to the approximation of $\mathcal{L}_2 \subset \mathcal{L}_2^{\text{loc}}$ yet. Therefore, I'll appreciate a kind answer about this.

Best Answer

According to this Q&A, Ito isometry holds for $\mathcal{L}_2^\text{loc}$, too. But this Q&A shows that it has a counterexample. Thus, I'll try to avoid this point and make a proof of our statement.

Since we have known that $F = F'$ a.e., it suffice to show that the following lemma.

Lemma. Let $\{ \Phi(t) \}_{t \in [0, T]} \in \mathcal{L}_2^{\text{loc}}$ which satisfies \[ \int_0^t \Phi(s) dW(s) = 0 \tag{1} \] for $t \in [0, T]$ a.s. Then, we have \[ \Phi(t, \omega) = 0 \tag{2} \] a.e. $(t, \omega) \in [0, T] \times \Omega$.

Proof. For $n \in \mathbb{N}$, we define $\tau_n$ as follows. \[ \tau_n = T \land \inf \left\{ t \in [0, T] \mid \int_0^t \lvert \Phi(t) \rvert^2 dt > n \right\}. \] We see that $\tau_n$ is a stopping time to define \[ \Phi^{(n)}(t) = 1_{\{t \leq \tau_n\}} \Phi(t). \] By definition of $\tau_n$, it follows that \[ \int_0^T \lvert \Phi^{(n)}(t) \rvert^2 dt \leq n < \infty. \] Hence, $\Phi^{(n)} \in \mathcal{L}_2$. Therefore, we can apply Ito isometry for $\Phi^{(n)}$ to obtain \[ E \left[ \left\lvert \int_0^t \Phi^{(n)} (u) dW(u) \right\rvert^2 \right] = E \left[ \int_0^t \left\lvert \Phi^{(n)} (u) \right\rvert^2 du \right] \tag{3} \] for $t \in [0, T]$. Since $0 \leq \tau_n \nearrow T$ a.s., we can apply monotone convergence theorem twice to have the following equation. \[ \lim_{n \to \infty} E \left[ \int_0^t \left\lvert \Phi^{(n)} (u) \right\rvert^2 du \right] = E \left[ \int_0^t \left\lvert \Phi (u) \right\rvert^2 du \right]. \tag{4} \] By (1), we have \[ \int_0^t \Phi^{(n)}(u) dW(u) = \int_0^{t \land \tau_n} \Phi(u) dW(u) = 0 \tag{5} \] a.s. Note that this equation follows even for $\Phi \in \mathcal{L}_2^{\text{loc}}$. Combining (3)-(5), we see that \[ E \left[ \int_0^t \lvert \Phi(u) \rvert^2 du \right] = 0. \] Therefore, we obtain (2).

Related Question