Unique solution for a system of linear equations

linear algebra

If $Q$ is square matrix that is not invertible, is it true that $x=Qx$ does not have a unique solution.
If yes, how can I prove it?

I know that if $x=Qx$, then $(I-Q)x=0$. Since Q is not invertible, the determinant of Q is zero. But what can I conclude about the determinant of $I-Q$?

Best Answer

$\det|I-Q|$ may or may not be equal to zero. For eaxmple: $$Q=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$ then $\det|I-Q|=-1$

Next, if $$Q=\begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$$ then both $\det|Q|=0$ and $\det|I-Q|=0$

In general If $$Q=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ $\det|Q|=0 \implies ad=bc~~~(1)$ Then $\det|I-Q|=0 \implies 1-a-d+ad=bc ~~~(2)$ So (1) and (2) imply that $$a,d=\frac{1\pm\sqrt{1-4bc}}{2}$$