Uniform convergence of a series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}\sin(\frac{x}{n}).$

real-analysisuniform-convergence

I know this series is uniformly convergent on any compact subset of $\mathbb{R}$ by the famous Weierstrass test. However, it is NOT uniformly convergent on $(-\infty, +\infty)$, could someone give me some ideas to prove this claim?

Best Answer

We can prove that the series is not uniformly convergent on $[0,\infty)$ by showing there exists $\epsilon_0 > 0$ such that for any $N \in \mathbb{N}$ there are positive integers $q>p> N$ and $x_N\in [0,\infty) $ such that

$$\tag{*}\sum_{n=p}^q \frac{(-1)^{n-1}}{\sqrt{n}}\sin \frac{x_N}{n} \geqslant \epsilon_0$$

Taking $p = 4N+1$ and $q = 8N$ we have

$$\sum_{n= 4N+1}^{8N} \frac{(-1)^{n-1}}{\sqrt{n}}\sin \frac{x_N}{n} = \sum_{j=0}^{N-1}\sum_{k=1}^4\frac{(-1)^{4N+4j +k-1}}{\sqrt{4N+4j +k}}\sin \frac{x_N}{4N+4j+k} $$

The first step is to find $x_N$ such that if $n \in\{4N+1,\ldots,8N\}$ and $n \equiv 1,2,3 \text{ (mod }4)$, then $(-1)^{n-1}$ and $\sin \frac{x_N}{n}$ have the same sign and $(-1)^{n-1} \sin \frac{x_N}{n} > \frac{1}{\sqrt{2}}$.

Define $Q_N \in \mathbb{N}$ as $$Q_N =\frac{\prod_{n= 4N+1}^{8N}n}{2^N\prod_{j=0}^N(4N+4j+4)} \\=2(4N+1)(2N+2)(4N+3)(4N+5)(2N+3)(4N+7) \cdots (8N-3)(4N-1)(8N-1)$$

and $X_N = 2N\pi + Q_N \pi$.

If $k = 1,3$, then $n= 4N+4j+k$ is odd, $(-1)^{4N+4j +k-1}=1$, $\frac{Q_N}{n}=2l$ is even, and

$$\frac{X_N}{n} \in \left(\frac{\pi}{4} + 2l\pi, \frac{\pi}{2} + 2l\pi\right) \implies \frac{(-1)^{4N+4j +k-1}}{\sqrt{4N+4j +k}}\sin \frac{x_N}{4N+4j+k}> \frac{\frac{1}{\sqrt{2}}}{\sqrt{4N+4j +k}} $$

If $k = 2$ then $n= 4N+4j+k$ is even, $(-1)^{4N+4j +k-1}=-1$, $\frac{Q_N}{n}=2l+1$ is odd, and

$$\frac{X_N}{n} \in \left(\frac{3\pi}{4} + 2l\pi, \frac{3\pi}{2} + 2l\pi\right) \implies \frac{(-1)^{4N+4j +k-1}}{\sqrt{4N+4j +k}}\sin \frac{x_N}{4N+4j+k}> \frac{(-1)(-\frac{1}{\sqrt{2}})}{\sqrt{4N+4j +k}} $$

If $k = 4$ then $n= 4N+4j+k$ is even, $(-1)^{4N+4j +k-1}=-1$, $\frac{Q_N}{n}$ is not an integer, and since $\sin \theta < 1$ for any $\theta$,

$$\frac{(-1)^{4N+4j +k-1}}{\sqrt{4N+4j +k}}\sin \frac{x_N}{4N+4j+k}> \frac{-1}{\sqrt{4N+4j +k}}$$

Thus,

$$\sum_{k=1}^4\frac{(-1)^{4N+4j +k-1}}{\sqrt{4N+4j +k}}\sin \frac{x_N}{4N+4j+k} \\ > \frac{1/\sqrt{2}}{\sqrt{4N+4j+1}}+\frac{1/\sqrt{2}}{\sqrt{4N+4j+2}}+\frac{1/\sqrt{2}}{\sqrt{4N+4j+3}}-\frac{1}{\sqrt{4N+4j+4}}> \frac{3/\sqrt{2}-1}{\sqrt{4N+4j+4}},$$

and, using (*) we get

$$\sum_{n= 4N+1}^{8N} \frac{(-1)^{n-1}}{\sqrt{n}}\sin \frac{x_N}{n}> \sum_{j=0}^{N-1}\frac{3/\sqrt{2}-1}{\sqrt{4N+4j+4}}> N\cdot \frac{3/\sqrt{2}-1}{\sqrt{8N}}> \frac{3/\sqrt{2}-1}{\sqrt{8}}$$

Hence, with $\epsilon_0 = \frac{3/\sqrt{2}-1}{\sqrt{8}}$ condition (*) is satisfied for every $N$ (the Cauchy criterion for uniform convergence is violated) and the series is not uniformly convergent on $[0,\infty)$.

A similar argument applies in showing that convergence is not uniform for $x \in (-\infty,0]$.