Trigonometric equation $5 \sin(x) + 4\cos(x) – 10\sin(x)\cos(x) = 2$

trigonometry

I need advice on solving this equation, I enclose my procedure.

$5 \sin(x) + 4\cos(x) – 10\sin(x)\cos(x) = 2$

$5 \sin(x)(1-2\cos(x)) -2(1-2\cos(x))=0$

$(1-2\cos(x))(5\sin(x)-2)=0 $

Here is my solution to this equation

$cos(x) = 1/2 \implies \pi/3 + 2k\pi, 5/3\pi+2k\pi $

$x = \arcsin(2/5)+2k\pi$

In entering the example, I still have the result of $\pi-\arcsin(2/5)$, but I don't know how to get to it. Thank you in advance for the advice

Best Answer

Use the tan half-angle subsitution $z = \tan (x/2)$ or $$x = 2\, {\rm atan}(z)$$

Note that

$$\begin{aligned} \cos(x) & = \frac{ (1-z^2)}{ (1+z^2)} \\ \sin(x) & = \frac{ (2 z)}{ (1+z^2)} \end{aligned}$$

which is substituted into the equation to get

$$ \begin{aligned} 5 \sin(x) + 4 \cos(x) - 10 \sin(x) \cos(x) & = 2 \\ \hline \\ 5 \frac{ (2 z)}{ (1+z^2)} + 4 \frac{ (1-z^2)}{ (1+z^2)} - 10 \frac{ (2 z)}{ (1+z^2)} \frac{ (1-z^2)}{ (1+z^2)} & = 2 \end{aligned} $$

The above is simplified to

$$ -\frac{ 2 z^4 -15 z^3 + 5 z -2}{ (1+z^2)^2 } = 1 $$

or

$$ 3 z^4 - 15 z^3 + 2 z^2 + 5 z = 1 $$

$$ (z^2 -5 z +1) (3 z^2 -1) = 0 $$

The four (primary) solutions are

$$ \begin{aligned} z & = \begin{cases} \frac{1}{\sqrt{3}} \\ - \frac{1}{\sqrt{3}} \\ \frac{5}{2} + \frac{\sqrt{21}}{2} \\ \frac{5}{2} - \frac{\sqrt{21}}{2} \end{cases} \end{aligned} \rightarrow \begin{aligned} x & = \begin{cases} \frac{\pi}{3} \\ - \frac{\pi}{3} \\ \frac{\pi}{2} + 2\, {\rm atan}\left( \frac{\sqrt{21}}{7} \right) \\ \frac{\pi}{2} - 2\, {\rm atan}\left( \frac{\sqrt{21}}{7} \right) \end{cases} \end{aligned} $$

Related Question