Trigonometric elimination between two variables

trigonometry

Eliminate $\theta$ and $\phi$ between the following equations: $$\begin{cases}\sin \theta + \sin \phi = x \\ \cos \theta + \cos \phi = y \\ \tan \frac {\theta}{2} \tan \frac {\phi}{2} = z\end{cases}$$

What I've done so far

I've established that $$\tan \left(\frac {\theta+\phi}{2}\right) = \frac {\sin \theta + \sin \phi}{\cos \theta + \cos \phi}$$ so that $$\tan \frac {\theta+\phi}{2} = \frac {x}{y}.$$

I then used the trigonometric identity $$\tan \left(\frac {\theta+\phi}{2}\right) = \frac {\tan \frac {\theta}{2} + \tan \frac {\phi} {2}}{1-\tan \frac {\theta}{2}\tan \frac {\phi} {2}}$$ and with a little manipulation got to $$\tan \frac {\theta}{2} + \tan \frac {\phi} {2} = \frac {x(1-z)}{y}$$

I'm stumped on the next steps…would I have to find the difference of the roots also (i.e. $\tan \frac {\theta}{2} – \tan \frac {\phi} {2}$)? Or is there a simpler way? (Side note: I also tried $\tan \frac {\theta}{2}$ substitution but that went nowhere.)

Best Answer

By sum to product and product to sum formulas we have

$$\begin{cases} \sin \theta + \sin \phi = 2\sin\left(\frac{\theta+\phi}2\right)\cos\left(\frac{\theta-\phi}2\right)=x\\ \cos \theta + \cos \phi = 2\cos\left(\frac{\theta+\phi}2\right)\cos\left(\frac{\theta-\phi}2\right)=y \\ \tan \frac {\theta}{2} \tan \frac {\phi}{2} =\frac{\cos\left(\frac{\theta-\phi}2\right)-\cos\left(\frac{\theta+\phi}2\right)}{\cos\left(\frac{\theta-\phi}2\right)+\cos\left(\frac{\theta+\phi}2\right)} =z \end{cases} \implies\begin{cases} 2ab=x\\ 2cb=y\\ \frac{b-c}{b+c}=z \end{cases}$$

and since $a^2+c^2=1$ we obtain

  • $b=\pm\frac12\sqrt{x^2+y^2}$
  • $c=\pm \frac{y}{\sqrt{x^2+y^2}}$

and then

$$z=\frac{\pm\frac12\sqrt{x^2+y^2}\mp\frac{y}{\sqrt{x^2+y^2}}}{\pm\frac12\sqrt{x^2+y^2}\pm\frac{y}{\sqrt{x^2+y^2}}}=\frac{x^2+y^2-2y}{x^2+y^2+2y}$$

Related Question