Tricky Integral – Solving ?0^? 12cos(x) sech(?/2 tan(x/2)) dx = ?^2

calculusdefinite integralsfourier transformintegrationtrigonometric-integrals

I need to show that the following tricky integral:
$$\int_0^\pi{12\cos x\ \mathrm{sech}\left(\frac {\pi}2\tan\frac x2\right)}\mathrm{d}x$$
is equal to exactly $\pi^2$. I have no idea how to start. I tried the substitution $u=\tan\frac x2$ and ended up with:

$$\int_0^\infty24\ \mathrm{sech}\frac{\pi u}{2}\frac{1-u^2}{(1+u^2)^2}\mathrm{d}u$$

I might have to use residue theorem or Fourier transformation here, but I'm lost. Thank you!

Best Answer

Continue with \begin{align} &\int_0^\infty \operatorname{sech}\frac{\pi x}{2}\frac{1-x^2}{(1+x^2)^2}dx\\ =& \int_0^\infty \operatorname{sech}\frac{\pi x}{2}\bigg(\int_0^\infty e^{-y} y \cos(x y) dy\bigg) dx\\ =& \int_0^\infty e^{-y}y \int_0^\infty \frac{\cos (xy)}{\cosh\frac{\pi x}2}dx \ dy =\int_0^\infty \frac{ e^{- y}y} {\cosh y} \overset{t=e^{-2y}}{dy}\\ =& - \frac12\int_0^1 \frac{\ln t}{1+t}dt\overset{ibp}= \frac12\int_0^1 \frac{\ln (1+t)}{t}dt=\frac{\pi^2}{24}\\ \end{align} where $\int_0^\infty \frac{\cos (xy)}{\cosh\frac{\pi x}2}dx=\text{sech}\ y$ and $ \int_0^1 \frac{\ln (1+t)}{t}dt =\frac{\pi^2}{12}$.

Related Question