Transformation of homogeneous coordinates to Euclidean coordinates

coordinate systemshomogeneous-spacestransformationvectors

I understand that two vectors

$$
v_{1} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\quad
\text{,}
\quad
v_{2} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}
$$

in homogeneous coordinates are equivalent if

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix}
=
\lambda
\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}
\quad,\quad
\lambda \neq 0.
$$

I visualize these equivalence classes as "rays" from the coordinate system origin (with the origin itself excluded).

To convert a vector from homogeneous to Euclidean coordinates, one divides all components by a number such that $z\rightarrow 1$. Example:

$$
\begin{pmatrix} 0 \\ 8 \\ 4 \end{pmatrix}_\text{hom}
\quad
\rightarrow
\quad
\begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}_\text{eucl}
$$

Question: What is the correct transformation of $v = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_\text{hom}$ to Euclidean coordinates?

UPDATE – I'm adding the source for this question. This is the slide in question:

slide

Take a look at how $P _{4} \,$ and $P _{5} \,$ are transformed:

$$
P_{4, \,hom} = \begin{pmatrix} 1 \\ 0 \\ 0.0001 \end{pmatrix}
\quad
\rightarrow
\quad
P_{4, \,eucl} = \begin{pmatrix} 10000 \\ 0 \\ 1 \end{pmatrix}
$$

$$
P_{5, \,hom} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
\quad
\rightarrow
\quad
\text{"at infinity} \,\textbf{on x-axis}"
$$

Best Answer

$v$ is a point at infinity. There is no equivalent point in euclidean space, but you can think it as the point of intersection of the lines of a parallel bundle.

Related Question