Transformation of derivatives from cartesian to cylindrical coordinates

calculuscylindrical coordinatesderivativestransformation

It is well known that for some function $\phi$ its derivatives have the following relations
$$\left[\begin{array}{l}
\frac{\partial \phi}{\partial r} \\
\frac{\partial \phi}{\partial \theta} \\
\frac{\partial \phi}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{\partial \phi}{\partial x} \\
\frac{\partial \phi}{\partial y} \\
\frac{\partial \phi}{\partial z}
\end{array}\right],\quad \left[\begin{array}{l}
\frac{\partial \phi}{\partial x} \\
\frac{\partial \phi}{\partial y} \\
\frac{\partial \phi}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\frac{\sin \theta}{r} & 0 \\
\sin \theta & \frac{\cos \theta}{r} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{\partial \phi}{\partial r} \\
\frac{\partial \phi}{\partial \theta} \\
\frac{\partial \phi}{\partial z}
\end{array}\right].$$

What happens if $\phi$ is not depending on the angle $\theta$? How can I then derive $\frac{\partial \phi}{\partial r}$?

Best Answer

What happens if $\phi$ is not depending on the angle $\theta$?

Then $\frac{\partial \phi}{\partial \theta} = 0$. And you can just ignore the middle row of the left transformation matrix, and the middle column of the right transformation matrix.

Related Question