Trace map on Ext groups of coherent sheaves

algebraic-geometrycoherent-sheaves

Let $ X $ be a projective variety and $ \mathcal{F} $ a coherent sheaf on $ X $. I'm kind of stumped at how the trace map $ \operatorname{Ext}^i( \mathcal{F}, \mathcal{F} ) \rightarrow H^i(X, \mathcal{O}_X) $ is defined for a general coherent sheaf?

For $ \mathcal{F} = E $ a vector bundle, it is easy. Because we have $ \operatorname{Ext}^i(E,E) \cong \operatorname{Ext}^i(\mathcal{O}_X, E^{\vee} \otimes E) = H^i(X, E^{\vee} \otimes E) $ where we crucially use the vector bundle assumption. Now post-compose this map by the map $ H^i(X, E^{\vee} \otimes E) \rightarrow H^i(X, \mathcal{O}_X) $ obtained simply by the evaluation map $ ev_E: E^{\vee} \otimes E \rightarrow \mathcal{O}_X $ defined (on presheaf level, which extends to sheaves) for $ \psi \in E^{\vee}(U) = \operatorname{Hom}(E|_U, \mathcal{O}_U) $ and $ s \in E(U) $ as $ ev_E( \psi \otimes s ) := \psi_U(s) \in \mathcal{O}_X(U) $.

The evaluation map exists for any coherent sheaf but the first step doesn't. So there must be another way to define the map. Looking for a better answer.

Best Answer

If $X$ is smooth then $$ \mathrm{Ext}^i(F,F) \cong \mathrm{H}^i(X, \mathrm{R}\mathcal{H}\mathit{om}(F,F)) \cong \mathrm{H}^i(X, \mathrm{R}\mathcal{H}\mathit{om}(F,\mathcal{O}_X) \otimes^{\mathrm{L}} F), $$ so it is enough to construct a local derived trace morphism $$ \mathrm{R}\mathcal{H}\mathit{om}(F,\mathcal{O}_X) \otimes^{\mathrm{L}} F \to \mathcal{O}_X\tag{*} $$ and then apply cohomology. For this just note that the functor $$ G \mapsto \mathrm{R}\mathcal{H}\mathit{om}(F,G) $$ is right adjoint to the functor $$ G \mapsto G \otimes^{\mathrm{L}} F, $$ and $(*)$ is just the counit of adjunction applied to $\mathcal{O}_X$.

Related Question