To evaluate integral using Beta function

beta functiongamma functionintegration

How to evaluate the integral $$ \int_{0}^{1}x^{m-1}(1-x)^{n-1}\log{x}dx, ~\Re(m), \Re(n)>0.$$ My idea is to use Beta function, but here the limits are already from $0$ to $1$. Which substitution will work such that limits remain same and we can also remove logarithm?

Best Answer

I'll use some probability theory here.

Changing the writing yields $$B(m,n)\int_{0}^{1}\log{x}\frac{x^{m-1}(1-x)^{n-1}}{B(m,n)}dx$$ The term $\frac{x^{m-1}(1-x)^{n-1}}{B(m,n)}$ represents the density $f(x;m,n)$of a random variable $X$ that is Beta distributed , hence $$B(m,n)\int_{0}^{1}\log{x}\frac{x^{m-1}(1-x)^{n-1}}{B(m,n)}dx$$ $$=B(m,n)\mathbb E\left[\log(X)\right]$$ $$=\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}\left[\psi(m)-\psi(m+n)\right]$$ where $\psi$ represents the Digamma function