Geometric Probability – Is the Probability that (0,0) is Inside the Triangle’s Incenter Exactly 0.13?

circlesconjecturesgeometric-probabilitygeometrytriangles

Three uniformly random points on the circle $x^2+y^2=1$ are the vertices of a triangle.

What is the probability that $(0,0)$ is inside the triangle's incircle?

(This a variation of the question "What is the probability that $(0,0)$ is inside the triangle?".)

A simulation with $10^8$ trials gives $P\approx 0.129963$. Is the probability exactly $0.13$? If so, this would be the weirdest geometrical probability I have ever seen.

My attempt:

Let $d=$ distance between the circles' centres, and let $r=$ radius of the triangle's incircle.

enter image description here

We are looking for $P(d<r)$.

Euler's triangle formula tells us that $d=\sqrt{1-2r}$.

So we are looking for $P(\sqrt{1-2r}<r)=P(r>\sqrt2-1)$. I do not know how to calculate this probability.

I know that $r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$ where $a,b,c$ are the side lengths of the triangle and $s=\frac{a+b+c}{2}$.

Best Answer

By using the formula found by kabenyuk, we have:

$$\begin{align} \frac{r}{R}>\sqrt{2}-1&\iff\cos(A)+\cos(B)+\cos(C) \ge \sqrt{2} \\ &\iff \cos(A) +\cos(B)-\cos(A)\cos(B)+\sqrt{(1-\cos^2(A))(1-\cos^2(B))}\ge \sqrt 2 \tag{1} \end{align}$$

Let the point $C$ fixed on the circle, the points $A$ and $B$ move independently and uniformly over the cirle, then the two angles $(A,B)$ (by abusing the notation, angle are also denoted by the letters $A$ and $B$) independent and uniformly distributed over the area $\left[0,\pi\right]^2 \cap\{A+B \le\pi \}$.

Here is the region $\Omega$ that satisfies $(1)$, plotted with Mathematica

 RegionPlot[{Sqrt[(1 - Cos[A]^2) (1 - Cos[B]^2)] >= 
 Cos[A]*Cos[B] - Cos[A] - Cos[B] + Sqrt[2], A + B <= Pi}, {A, 0, 
 Pi}, {B, 0, Pi}]

enter image description here

From the graph, we observe that $(A,B)$ that satisfies $(1)$ satisfies automatically the condition $A+B \le \pi$. So, it suffices to solve $(1)$ with the constraint $ \{0\le A \le \pi\} \cap \{0\le B \le \pi\}$.

Denote $y = \cos(B)$ and solve the equation $$\cos(A) +y-\cos(A)y+\sqrt{(1-\cos^2(A))(1-y^2)}\ge \sqrt 2$$ with the constraints $0\le A \le \pi$ and $-1 \le y \le 1$:

Reduce[Sqrt[(1 - Cos[A]^2) (1 - y^2)] >= 
Cos[A]*y - Cos[A] - y + Sqrt[2] && 0 <= A <= Pi && -1 <= y <= 1, y]

We obtains a closed-form expression for $y$ in function of $A$: $$\begin{align} &f_1(A) \le y \le f_2 (A) \hspace{2cm} \text{for }A \in \left[\arccos(2\sqrt{2}-2),\frac{\pi}{2} \right]\\ &f_1(A) = \frac{1}{2} \left(\sqrt{2} - \cos(A) \color{red}{-} \sqrt{\frac{(2 - 2 \sqrt{2} + \cos(A)) (\cos(A) + \cos^2(A))}{(-1 + \cos(A))}}\right)\\ &f_2(A) = \frac{1}{2} \left(\sqrt{2} - \cos(A) \color{red}{+} \sqrt{\frac{(2 - 2 \sqrt{2} + \cos(A)) (\cos(A) + \cos^2(A))}{(-1 + \cos(A))}}\right) \end{align}$$

We deduce then $$\color{red}{\Omega = \{(A,B)| (A,B)\in \left[\arccos(2\sqrt{2}-2),\frac{\pi}{2} \right] \times [\arccos(f_2(A),\arccos(f_1(A) ] \}}$$

Let us check again graphically:

Plot[{ArcCos[f1[A]], ArcCos[f2[A]]}, {A, ArcCos[2 (-1 + Sqrt[2])], 
\[Pi]/2},PlotRange -> {{0, Pi}, {0, Pi}}, AspectRatio -> 1]

we obtain exactly the same graph as above

enter image description here

The probability is finally calculated with a single integral:

$$\color{red}{P = \frac{2}{\pi^2} \int_{\arccos(2\sqrt{2}-2)}^{\frac{\pi}{2}}\left( \arccos(f_1(A)-\arccos(f_2(A) \right)dA \approx 0.1299825992533093}$$

2/Pi^2*NIntegrate[ArcCos[f1[A]]-ArcCos[f2[A]],{A,ArcCos[2(-1 +Sqrt[2])],\[Pi]/2}]

where $$\begin{align} &\color{red}{f_1(A) = \frac{1}{2} \left(\sqrt{2} - \cos(A) - \sqrt{\frac{(2 - 2 \sqrt{2} + \cos(A)) (\cos(A) + \cos^2(A))}{(-1 + \cos(A))}}\right)}\\ &\color{red}{f_2(A) = \frac{1}{2} \left(\sqrt{2} - \cos(A) + \sqrt{\frac{(2 - 2 \sqrt{2} + \cos(A)) (\cos(A) + \cos^2(A))}{(-1 + \cos(A))}}\right)} \end{align}$$