The value of: $\lim_{n\rightarrow \infty}\sum_{r=1}^{n-1}\frac{\cot^2(r\pi/n)}{n^2}$

limitssequences-and-seriessummationtrigonometry

$$\lim_{n\rightarrow \infty}\sum_{r=1}^{n-1}\frac{\cot^2(r\pi/n)}{n^2}$$

How can I calculate the value of this trigonometric function where limits tends to infinity? I have thought and tried various of methods like using:

  1. Tan(x)/x property
  2. Converting lim to
    Integration
  3. Sandwich theorem
  4. Trigonometric series

But none worked out for me.

So please tell me a good and easy approach for this question 🙂

Best Answer

It would be naïve and incorrect to proceed as follows

$$\begin{align} \sum_{k=1}^{n-1}\frac{\cot^2(\pi k/n)}{n^2}&\underbrace{\approx}_{\text{WRONG!}} \frac1n\int_{1/n}^{1-1/n}\cot^2(\pi x)\,dx\\\\ &=\frac1n\left.\left(-x-\frac1\pi \cot(\pi x)\right)\right|_{1/n}^{1-1/n}\\\\ &=\frac2{n^2}-\frac1n +\frac2{n\pi}\cot(\pi/n)\\\\ &\to \frac2{\pi^2} \end{align}$$


Instead, we use $\cot^2(x)=\csc^2(x)-1$ to write

$$\begin{align} \sum_{k=1}^{n-1}\frac{\cot^2(\pi k/n)}{n^2}&=\frac1n-\frac1{n^2}+\sum_{k=1}^{n-1}\frac{1}{n^2\,\sin^2(\pi k/n)}\\\\ &=\frac1n-\frac1{n^2}+2\sum_{k=1}^{\lfloor n/2\rfloor-1}\frac{1}{n^2\,\sin^2(\pi k/n)} \end{align}$$

Next, we note that for $\pi/2>x>0$, $\left(x-\frac16 x^3\right)^2\le \sin^2(x)\le x^2$. Hence, we have

$$\begin{align} \frac2{\pi^2}\sum_{k=1}^{\lfloor n/2\rfloor-1}\frac1{k^2} \le \frac2{n^2}\sum_{k=1}^{\lfloor n/2\rfloor-1}\frac{1}{n^2\,\sin^2(\pi k/n)}&\le \frac2{\pi^2}\sum_{k=1}^{\lfloor n/2\rfloor-1}\frac1{k^2\left(1-\frac16\frac{\pi^2k^2}{n^2}\right)^2}\\&=\frac2{\pi^2}\sum_{k=1}^{\lfloor n/2\rfloor-1}\frac1{k^2}+O\left(\frac1n\right) \end{align}$$

whence letting $n\to \infty$ and applying the squeeze theorem yields the coveted limit

$$\lim_{n\to\infty}\sum_{k=1}^{n-1}\frac{\cot^2(k\pi/n)}{n^2}=\frac13$$