The second derivative of the characteristic function and the integral of the random variable

characteristic-functionsprobabilityprobability theoryrandom variablesstatistics

I want to prove that if characteristic function $\bar\mu$ has a second derivative than $$\int_\mathbb{R}|x|^2\mu(dx) < +\infty.$$
I am thinking about how to apply characteristic functions, but I do not know how to do it. May somebody can help me? I would be grateful.

Best Answer

Consider the second-order central difference of a function $f$: $$ \delta_h^2[f](x)=f(x-2h)+f(x+2h)-2f(x). $$ Then $$ \delta_h^2[\bar{\mu}](t)=\int_{\mathbb{R}}e^{itx}(2i\sin xh)^2\, d\mu(x), $$ and $$ \left|\frac{\delta_h^2[\bar{\mu}](0)}{(2h)^2}\right|=\int_{\mathbb{R}}\left(\frac{\sin xh}{h}\right)^2\, d\mu(x). $$ For each $N>0$, $$ |\bar{\mu}''(0)|=\lim_{h\to 0}\left|\frac{\delta_h^2[\bar{\mu}](0)}{(2h)^2}\right|\ge \lim_{h\to 0}\int_{-N}^N\left(\frac{\sin xh}{h}\right)^2\, d\mu(x)=\int_{-N}^N x^2\,d\mu(x), $$ which implies the result.

Related Question