The reasoning behind $\sup\{\alpha\beta+\alpha\zeta\mid\zeta<\gamma\}=\alpha\beta+\sup\{\alpha\zeta\mid\zeta<\gamma\}$

elementary-set-theoryordinalsproof-explanationsupremum-and-infimumwell-orders

Let $\alpha,\beta,\gamma$ be ordinals. Then $\alpha(\beta+\gamma)=\alpha\beta+\alpha\gamma$.

I'm been looking for some proofs of this theorem on MSE and found that the gist is the equality $\sup\{\alpha\beta+\alpha\zeta\mid\zeta<\gamma\}=\alpha\beta+\sup\{\alpha\zeta\mid\zeta<\gamma\}$. How do I take $\alpha\beta$ out of the $\sup$?

Please help me elaborate on how we get this equality! Thank you so much! For reference, I include the proof also.


Proof:

We prove the statement by induction on $\gamma$.

  • If $\gamma=0$, then $\alpha(\beta+\gamma)=\alpha(\beta)=\alpha\beta=\alpha\beta+\alpha\gamma$.

  • If $\gamma=\delta+1$, then by IH, $\alpha(\beta+\delta)=\alpha\beta+\alpha\delta$. We have $\alpha(\beta+(\delta+1))=\alpha((\beta+\delta)+1)$ $=\alpha(\beta+\delta)+\alpha=(\alpha\beta+\alpha\delta)+\alpha=\alpha\beta+(\alpha\delta+\alpha)=\alpha\beta+\alpha(\delta+1)$.

  • If $\gamma$ is a limit ordinal, then $\beta+\gamma$ is a limit ordinal and thus $\beta+\gamma=\sup\{\beta+\zeta\mid\zeta<\gamma\}$. Then $\alpha(\beta+\gamma)=\sup\{\alpha\xi\mid\xi<\beta+\gamma\}=\sup\{\alpha(\beta+\zeta)\mid\zeta<\gamma\}=\color{blue}{\sup\{\alpha\beta+\alpha\zeta\mid\zeta<\gamma\}=\alpha\beta+\sup\{\alpha\zeta\mid\zeta<\gamma\}}=\alpha\beta+\alpha\gamma$.

Best Answer

This comes from a more general fact:

Let $A$ be a set of ordinals and $\alpha$ be an ordinal. Then $$\alpha+\sup A=\sup\{\alpha+\gamma\mid \gamma\in A\}.\tag{1}$$

Note that by definition $\sup A=\bigcup A$. Let $\beta:=\sup A$.

  • If $\beta=0$ then $(1)$ holds trivially.

  • If $\beta=\delta+1$, you can show that necessarely $\beta\in A$, i.e, $\beta=\max A$. Therefore $(1)$ holds.

  • If $\beta$ is a limit ordinal, then by the very definition of ordinal addition, $\alpha+\beta=\sup\{\alpha+\gamma\mid\gamma\in\beta\}$, and you can easily verify that $$\sup\{\alpha+\gamma\mid\gamma\in\beta\}=\sup\{\alpha+\gamma\mid\gamma\in A\}$$ by looking at the cases where $\beta\in A$ and $\beta\notin A$.

Related Question