The probability that in the first 7 draws, at least one ball of each colour is drawn

combinatoricsprobability

Consider an urn containing 5 red, 5 black, and 10 white balls. If balls
are drawn without replacement from the urn, calculate the probability
that in the first 7 draws, at least one ball of each color is drawn.

I can understand the total number of cases will be ${20 \choose 7}$ but can't find out the numerator. Please help.

Best Answer

Let $A,B,C$ denote the events that we draw "at least 1 red", "at least 1 black", "at least 1 white" ball in 7 draws.

We're looking for $A\cap B\cap C$.

Using inclusion-exclusion we get: $$ A\cup B\cup C=A+B+C - A\cap B - A \cap C - B\cap C + A\cap B\cap C $$

We further have that $A\cup B\cup C = \Omega = \binom{20}7$.

Since all two element cuts still are difficult to calculate, we apply inclusion-exclusion to them as well: $$A\cup B =A+B - A\cap B $$ We then use that $A\cup B = \binom{20}7-A^C\cap B^C $ and this event is $\binom{20}7 -120$ for $A,B$ and $\binom{20}7$ else.
Finally, we can also calculate $A,B,C$ using their complement.

Substituting in we now have:

$$ A\cup B\cup C=A+B+C - A\cap B - A \cap C - B\cap C + A\cap B\cap C \\ \Leftrightarrow\\ A\cup B\cup C=A+B+C -A-B+A\cup B + A \cup C-A-C +B\cup C - B - C + A\cap B\cap C \\ \Leftrightarrow\\ A\cap B\cap C = -A \cup C + A - A\cup B + A\cup B\cup C + B - B\cup C + C \\ \Leftrightarrow\\ A\cap B\cap C = -\binom{20}7 + A -(\binom{20}7 -120) + \binom{20}7 + B - \binom{20}7 + C \\ \Leftrightarrow\\ A\cap B\cap C = -\binom{20}7 + \binom{20}7-\binom{15}7 -(\binom{20}7 -120) + \binom{20}7 + \binom{20}7-\binom{15}7 - \binom{20}7 + \binom{20}7-\binom{10}7 \\ \Leftrightarrow\\ A\cap B\cap C = 64650 $$

And so we have that $\mathbb{P}(A\cap B\cap C) = 64650/77520$.

If we denote with $\mathcal{H}_{\mathcal{n},(\mathcal{N}_1,...,\mathcal{N}_m)}\left(\{\left(a_1,\ldots,a_m\right)\}\right)$ the hypergeometric distribution on $m$ categories with category $i$ having $\mathcal{N}_i$ elements when we draw exactly $a_i$ elements of category $i$, then we can also brute-force calculate it: $$\begin{align} \mathbb{P}(A\cap B\cap C) &=\sum_{i+j+k = 7\\ i,j,k\ge 1} \mathcal{H}_{\mathcal{7},(5,5,10)}\left(\{\left(i,j,k\right)\}\right) \\ &=\sum_{i=1}^{7-2} \sum_{j=1}^{7-i-1} \mathcal{H}_{\mathcal{7},(5,5,10)}\left(\{\left(i,j,7-i-j\right)\}\right) \end{align}$$

Related Question