The number of partitions of set $A=\{1,2,\cdots,n\}$ non-empty blocks of even size

combinatoricsset-partition

Let $A=\{1,2,\cdots,n\}$ be a set with $n$ element and ${n \brace k}_e$ be a number of partitions of the set $A=\{1,2,\cdots,n\}$ into exactly $k$ non-empty blocks of even size. By using of symbolic method, we have the following generating function for ${n \brace k}_e$

$$\sum_{n=k}^{\infty}{n \brace k}_e \frac{x^n}{n!}=\frac{1}{k!}(coshx-1)^k$$

How can prove it?

Moreover, if ${n \brace k}_o$ be the number of partitions of the set $A$ into exactly $k$ non-empty blocks of an odd size, we have the following generating function for it

$$\sum_{n=k}^{\infty}{n \brace k}_o \frac{x^n}{n!}=\frac{1}{k!}(sinhx)^k$$

How can obtain this generating function?

Best Answer

Using the notation from Analytic Combinatorics we get the combinatorial class

$$\def\textsc#1{\dosc#1\csod} \def\dosc#1#2\csod{{\rm #1{\small #2}}} \textsc{SET}_{=k}(\textsc{SET}_{\text{even}}(\mathcal{Z})).$$

Translating to generating functions we then obtain

$$\frac{1}{k!} \left(\sum_{q\ge 1} \frac{z^{2q}}{(2q)!}\right)^k \\ = \frac{1}{k!} \left(-1 + \sum_{q\ge 0} \frac{z^{2q}}{(2q)!}\right)^k \\ = \frac{1}{k!} \left(-1 + \frac{1}{2}(\exp(z)+\exp(-z))\right)^k \\ = \frac{1}{k!} \left(-1 + \cosh(z)\right)^k.$$

Odd is derived similarly.

Related Question