The $n$th derivative of the $n$th spherical Bessel function

bessel functionslegendre polynomialsspecial functions

I quote Problem 12.4.7 of the 5th edition of Mathematical Methods for Physicists by Arfken, Weber, and Harris:

A plane wave may be expanded in a series of spherical waves by the Rayleigh equation:
$$
e^{ikr\cos\gamma} = \sum_{n=0}^\infty a_n j_n(kr) P_n(\cos \gamma).
$$

Show that $a_n = i^n(2n+1)$. Hint: Use the orthogonality of the $P_n$ to solve for $a_n j_n(kr)$. Differentiate $n$ times with respect to $kr$ and set $r=0$ to eliminate the $r$-dependence. The remaining integral is
$$
\int_{-1}^1 x^n P_n(x) \mathrm dx = \frac{2^{n+1} (n!)^2}{(2n+1)!},
$$

as shown in a previous exercise.

Using the orthogonality condition for the Legendre polynomials (and substitution $x=\cos\gamma$), I obtained
$$
\frac{2}{2n+1} a_n j_n(kr) = \int_{-1}^1e^{ixkr}P_n(x)\mathrm dx,
$$

differentiating which $n$ times w.r.t. $kr$ gives
$$
\frac{2}{2n+1} a_n j_n^{(n)}(kr) = \int_{-1}^1(ix)^n e^{ixkr}P_n(x)\mathrm dx.
$$

My trouble comes from the $j_n^{(n)}(kr)$ bit. How does one differentiate the $n$th spherical Bessel function $n$ times? Or does setting $r=0$ automatically tell us its value?

Best Answer

Note that the spherical Bessel functions admit the integral representation $$j_n(z)=\frac{(-\mathrm i)^n}{2}\int_0^\pi \mathrm e^{\mathrm iz\cos\theta}P_n(\cos\theta)\sin\theta~\mathrm d\theta$$ Which, by the Leibniz rule, means $$j_n^{(n)}(z)=\frac{1}{2}\int_0^\pi \mathrm e^{\mathrm iz\cos\theta}\cos(\theta)^nP_n(\cos\theta)\sin\theta~\mathrm d\theta \\ j_n^{(n)}(0)=\frac{1}{2}\int_0^\pi \cos(\theta)^n P_n(\cos\theta)\sin\theta~\mathrm d\theta$$ Which, by a change of variable $\cos\theta=x$ yields $$j_n^{(n)}(0)=\frac{1}{2}\int_{-1}^1 x^nP_n(x)\mathrm dx$$

Which you already know!

Related Question