The limit of $\lim_{n \to +\infty} a_0+a_1+a_2+…….a_n$ where $a_p=\sum_{i=0}^p (-1)^i\frac{\binom{p}{i}}{(i+2)(i+4)}$

calculuscontest-mathlimitsrecreational-mathematicssequences-and-series

I have taken this question from molodovian national MO 2008
The question is as follows

The sequence $(a_p)_p\ge 0$ is defined as $$a_p=\sum_{i=0}^p (-1)^i\frac{\binom{p}{i}}{(i+2)(i+4)}$$

Now let's find the limit

\begin{align*} \lim_{n \to +\infty} a_0+a_1+a_2+…….a_n \end{align*}

enter image description here

Can anyone help me to go further.

Best Answer

Let $$\begin{split} S_{k,p} &= \sum_{i=0}^p\binom{p}{i}\frac{(-1)^i}{i+k}\\ &= \sum_{i=0}^p\binom{p}{i}(-1)^i\int_0^1 x^{i+k-1}dx\\ &= \int_0^1 \sum_{i=0}^p\binom{p}{i}(-1)^ix^{i+k-1}dx\\ &= \int_0^1 x^{k-1}(1-x)^pdx \end{split}$$ Then since $$\frac 1{(i+2)(i+4)}=\frac 1 2 \left(\frac 1 {i+2}-\frac 1 {i+4}\right)$$ we have $$a_p=\frac 1 2 (S_{2,p}-S_{4,p})=\frac 1 2 \int_0^1 (x-x^3)(1-x)^pdx$$ Thus,

$$\begin{split} \sum_{p=0}^n &a_p= \frac 1 2 \int_0^1(x-x^3)\sum_{p=0}^n(1-x)^pdx\\ &=\frac 1 2 \int_0^1(x-x^3)\frac{1-(1-x)^{n+1}}{x}dx\\ &=\frac 1 2 \int_0^1 (1-x^2)(1-(1-x)^{n+1})dx\\ \end{split}$$

Using Lebesgue's Dominated Convergence Theorem: $$\lim_{n\rightarrow+\infty}\sum_{p=0}^n a_p = \frac 1 2 \int_0^1 (1-x^2)dx=\frac 1 2 \left (1- \frac 1 3\right) = \frac 1 {3}$$

Related Question