The Fourier transform of $|x|$

calculusdirac deltafourier transform

I am trying to find the Fourier transform of $|x|$ in the sense of distributions in its simplest form. Here is what I have done so far:

Let
$$f(x)=|x|=\lim_{a\rightarrow 0}\frac{1-e^{-a|x|}}{a},$$
then the Fourier transform is given by
$$\begin{aligned}
\hat{f}(\xi)&=\int_{-\infty}^\infty f(x)e^{-2\pi i x \xi}dx \\
&=\lim_{a\rightarrow 0}\frac{1}{a}\left(\delta(\xi)-\frac{2a}{a^2+4\pi^2\xi^2}\right).
\end{aligned}$$

Using the identity (see here),
$$\delta(\xi)=\lim_{a\rightarrow 0}\frac{1}{\pi}\frac{a}{a^2+\xi^2},$$
we know that
$$2\pi\delta(2\pi\xi)=\lim_{a\rightarrow0}\frac{2a}{a^2+4\pi^2\xi^2}.$$
Hence, using the identity,
$$\delta(b x)=\frac{1}{|b|}\delta(x),$$
we know that
$$\hat{f}(\xi)\stackrel{?}{=}\lim_{a\rightarrow0}\frac{1}{a}[\delta(\xi) – \delta(\xi)].$$
This doesn't seem right… Can you see where I have gone wrong and do you know how to calculate $\hat{f}(\xi)$ in its simplest form?

Best Answer

So, a way to compute it is to write $|x| = x\mathop{\mathrm{sign}}(x)$. By definition, we have $$ \langle \mathcal{F}(|x|),\varphi\rangle = \langle |x|,\mathcal{F}(\varphi)\rangle = \langle x\mathop{\mathrm{sign}}(x),\mathcal{F}(\varphi)\rangle $$ Since $x∈ C^\infty$, we can then write $$ \langle x\mathop{\mathrm{sign}}(x),\mathcal{F}(\varphi)\rangle = \langle \mathop{\mathrm{sign}}(x),x\,\mathcal{F}(\varphi)\rangle = \frac{1}{2i\pi}\langle \mathop{\mathrm{sign}}(x),\mathcal{F}(\varphi')\rangle $$ where I used the formula for the Fourier transform of a derivative. Now, by definition again, and then using the fact that $\mathcal{F}(\mathop{\mathrm{sign}}(x)) = 1/{i\pi} \,\mathrm{P}(\tfrac{1}{x})$ (the principal value of $1/x$) we get $$ \frac{1}{2i\pi}\langle \mathop{\mathrm{sign}}(x),\mathcal{F}(\varphi')\rangle = \frac{1}{2i\pi}\langle \mathcal{F}(\mathop{\mathrm{sign}}(x)),\varphi'\rangle \\ = \frac{-1}{2\pi^2}\langle \mathrm{P}(\tfrac{1}{x}),\varphi'\rangle = \frac{1}{2\pi^2}\langle \mathrm{P}(\tfrac{1}{x})',\varphi\rangle $$ so that $$ \mathcal{F}(|x|) = \frac{1}{2\pi^2} \mathrm{P}(\tfrac{1}{x})' = \frac{-1}{2\pi^2} \mathrm{P}(\tfrac{1}{x^2}) $$ where $\mathrm{P}(\tfrac{1}{x^2})$ is the Hadamard finite part of $\tfrac{1}{x^2}$. Away from $0$, we can thus say that $$ \mathcal{F}(|x|) = \frac{-1}{2\pi^2x^2} $$ (if I did not make mistakes in the constants and signs ...)