The determinant representation of the curl(v) index notation

grad-curl-divvectors

I can't visualize $\mathbf 16a$ enter image description here

in determinate form. I cannot read the given index notation, and convert it to the following form:

$$curl \ \mathbf v = \mathbf \nabla \times \mathbf v = \begin{vmatrix} \mathbf i_1&\mathbf i_2&\mathbf i_3\\ \frac{\partial}{\partial x_1}&\frac{\partial}{\partial x_2}&\frac{\partial}{\partial x_3}\\ v_1& v_2&v_3 \end{vmatrix}$$

I read $\mathbf 16a$ as:

$$(\mathbf i_1 + \mathbf i_2 +\mathbf i_3) \times (\frac{\partial \mathbf v}{\partial x_1} + \frac{\partial \mathbf v}{\partial x_2} + \frac{\partial \mathbf v}{\partial x_3})$$

I assume it is summation over k in each situation, but I cannot convert to determinate form.

I read $e_{kmr}\frac{\partial v_m}{\partial x_k} \mathbf i_r$ as summation over m and k with component r, and converted by $\mathbf i_k \times \mathbf i_m = e_{kmr}\mathbf i_r$.

$$\mathbf i_k \times \mathbf i_m \frac{\partial v_m}{\partial x_k}= e_{kmr}\frac{\partial v_m}{\partial x_k}\mathbf i_r$$

$( \mathbf \nabla \times \mathbf v ) = e_{123}\frac{\partial v_2}{\partial x_1}\mathbf i_3 + e_{231}\frac{\partial v_3}{\partial x_2}\mathbf i_1 + e_{312}\frac{\partial v_1}{\partial x_3}\mathbf i_2 + e_{132}\frac{\partial v_3 }{\partial x_1}\mathbf i_2 + e_{321}\frac{\partial v_2}{\partial x_3}\mathbf i_1 + e_{213}\frac{\partial v_1}{\partial x_2}\mathbf i_3$

Which is:

$(\frac{\partial v_3}{\partial x_2} – \frac{\partial v_2}{\partial x_3})\mathbf i_1 + (\frac{\partial v_1}{\partial x_3} – \frac{\partial v_3}{\partial x_1})\mathbf i_2 + (\frac{\partial v_2}{\partial x_1} – \frac{\partial v_1}{\partial x_2})\mathbf i_3$

and verified by my calculus books.

Question: Can you please show how represent $\mathbf 16a$ in determinant form.

References:

Anton, Howard. (1992). Calculus with Analytic Geometry. 4th Edition. John Wiley & Sons

Chassnov, Jeffery R. Vector Calculus for Engineers: Lecture Notes for coursera. URL: https://www.math.hkust.edu.hk/~machas/vector-calculus-for-engineers.pdf

[Image] Warsi, Z.U.A.. Fluid Dynamics. Taylor and Francis CRC ebook account. Kindle Edition.

Best Answer

This is not a correct reading of $16a$. A correct expansion would be: $$i_{k}\times \frac{\partial v}{\partial x_{k}}= \sum_{k} (i_{k}\times \frac{\partial v}{\partial x_{k}}) = \\ (1,0,0)\times \frac{\partial v}{\partial x_{1}} + (0,1,0)\times \frac{\partial v}{\partial x_{2}} + (0,0,1)\times \frac{\partial v}{\partial x_{3}} = \\ = (1,0,0)\times (\frac{\partial v_{1}}{\partial x_{1}},\frac{\partial v_{2}}{\partial x_{1}} ,\frac{\partial v_{3}}{\partial x_{1}}) +\\ + (0,1,0)\times (\frac{\partial v_{1}}{\partial x_{2}},\frac{\partial v_{2}}{\partial x_{2}} ,\frac{\partial v_{3}}{\partial x_{2}}) +\\ + (0,0,1)\times (\frac{\partial v_{1}}{\partial x_{3}},\frac{\partial v_{2}}{\partial x_{3}} ,\frac{\partial v_{3}}{\partial x_{3}}) $$

Related Question