“The curvature of $\nabla=\mathrm d+\omega$ equals $\mathrm{d}\omega+\omega\wedge\omega$”

connectionsdifferential-geometryvector-bundles

The following definition and lemma are from page $23$ of Heat Kernels and Dirac Operators.

Definition:

Let $E$ be a vector bundle with base space $M$. The curvature $F$ of a covariant derivative $\nabla$ is defined by
$$F(X,Y)=[\nabla_X,\nabla_Y]-\nabla_{[X,Y]}$$
for all vector fields $X$ and $Y$ on $M$.

Lemma:

If $E$ is a trivial bundle and $\nabla = \mathrm d + \omega$, then $F$ is given by the formula
$$F=\mathrm{d}\omega+\omega\wedge\omega.$$

My problem is that I don't even know how $\mathrm d\omega$ and $\omega\wedge\omega$ are defined in this context. Since
$$(\mathrm d\alpha)(X,Y)=\mathrm{d}_X\iota_Y\alpha-\mathrm{d}_Y\iota_X\alpha-\iota_{[X,Y]}\alpha$$
and
$$(\alpha\wedge\alpha)(X,Y)=[\iota_X\alpha,\iota_Y\alpha]$$
for a $1$-form $\alpha$ (see e.g. equation $(1.3)$ and definition $1.6$ in the book), my guess would be that
$$(\mathrm d\omega)(X,Y)=\mathrm d_X\iota_Y\omega-\mathrm d_Y\iota_X\omega-\iota_{[X,Y]}\omega$$
and
$$(\omega\wedge\omega)(X,Y)=[\iota_X\omega,\iota_Y\omega].$$
Actually this seems to yield the correct result.$^1$ Nevertheless I would like to get a confirmation, preferably an answer drawing from credible and/or official sources.


$^1$ To simplify the notation, set $\omega_X:=\iota_X\omega$.
\begin{align}
&F(X,Y)\Phi=\nabla_X\nabla_Y\Phi-\nabla_Y\nabla_X\Phi-\nabla_{[X,Y]}\Phi&\\
&=\underbrace{(\mathrm{d}_X\mathrm{d}_Y-\mathrm{d}_Y\mathrm{d}_X)\Phi}_{=\mathrm{d}_{[X,Y]}\Phi}+\underbrace{\mathrm{d}_X(\omega_Y\Phi)-\omega_Y\mathrm{d}_X\Phi}_{=(\mathrm d_X\omega_Y)\Phi}+\underbrace{\omega_X\mathrm{d}_Y\Phi-\mathrm{d}_Y(\omega_X\Phi)}_{=-(\mathrm d_Y\omega_X)\Phi}&\\
&\phantom{={}}-\mathrm{d}_{[X,Y]}\Phi+[\omega_X,\omega_Y]\Phi-\omega_{[X,Y]}\Phi&\\
&=\underbrace{(\mathrm d_X\omega_Y-\mathrm d_Y\omega_X-\omega_{[X,Y]})}_{=(\mathrm{d}\omega)(X,Y)}\Phi+\underbrace{(\omega_X\omega_Y-\omega_Y\omega_X)}_{=(\omega\wedge\omega)(X,Y)}\Phi&\\
&=(\mathrm{d}\omega+\omega\wedge\omega)(X,Y)\Phi&
\end{align}

Best Answer

Addressing your question about $d\omega$ and $\omega\wedge\omega$:

If the trivial bundle is $E = M \times \mathbb{R}^k$, then each standard basis vector $e_j \in \mathbb{R}^k$ defines a section of $E$ and therefore, there is a a matrix of $1$-forms $\omega^i_j$ such that $$\nabla_X e_j = \langle\omega^i_j,X\rangle e_i.$$ Denote that matrix by $\omega$. Therefore, given a section $s = s^je_j$, $$\nabla s = ds^j e_j + s^j \nabla e_j = ds^j e_j + s^j\omega_j^ie_i = (ds^j + s^i\omega^j_i)e_j = (d + \omega)s.$$ Then $d\omega$ is simply the matrix whose components are $d\omega^i_j$ and $\omega\wedge\omega$ is the matrix of 2-forms whose components are $\omega^i_p\wedge\omega^p_j$.

Here's another way to say the same thing: First, note that treating $E$ as a trivial bundle is essentially the same as choosing a frame of sections of $E$ and writing any section of $E$ with respect to the frame.

In particular, for each $X \in T_pM$, there is a matrix $A_X$ of coefficients such that $$ \nabla_X s_j = s_i(A_X)_j^i. $$ Since the map $X \rightarrow A_X$ is point wise linear, there exist $1$-forms $\omega^i_j$ such that $$ \nabla s_j = s_i\omega_j^i. $$ Given any section $s = a^js_j$, $$ \nabla s = \nabla(a^js_j) = da^js_j + a^j\omega^i_js_i = (da^j + a^i\omega_i^j)s_j $$ In this sense, $$ \nabla = d + \omega. $$

The curvature tensor at $p \in T_pM$ is defined as follows: Given $X, Y\in T_pM$ and a section $s$ of $E$, it is $$ F(X,Y)s = \nabla_X(\nabla_Ys) - \nabla_Y(\nabla_Xs) - \nabla_{[X,Y]}s \in E_p. $$ You can verify that $F(X,Y)s$ depends only on $s(p)$ and therefore for each $p \in M$ and $X, Y \in T_pM$, defines a bundle map $$ F(X,Y): E_p \rightarrow E_p. $$ In particular, for each $p \in M$ and $X, Y \in T_pM$, there exists a matrix $B_{X,Y}$ such that $$ F(X,Y)s_j(p) = s_i(p)(B_{X,Y})^i_j. $$ It can be verified that each $(B_{X,Y})^i_j$ defines a differential $2$-form $\Omega^i_j$ on $M$ such that $$ (B_{X,Y})^i_j = \langle \Omega^i_j, X\otimes Y\rangle. $$ Therefore, $$ F(X,Y)s_j = s_i\langle\Omega^i_j,X\otimes Y\rangle. $$ On the other hand, \begin{align*} F(X,Y)s_j &= \nabla_X(\nabla_Ys_j) - \nabla_Y(\nabla_XSs_j) - \nabla_{[X,Y]}s_j\\ &=\nabla_X(s_i\langle\omega^i_j,Y\rangle) - \nabla_Y(s_i\langle\omega^i_j,X\rangle) - s_i\langle \omega^i_j,[X,Y]\rangle\\ &= (\nabla_Xs_i)\langle\omega^i_j,Y\rangle + s_i(X\langle\omega^i_j,Y\rangle) - (\nabla_Ys_i)\langle\omega^i_j,X\rangle - s_i(Y\langle\omega^i_j,X\rangle) - s_i\langle\omega^i_j,[X,Y]\rangle\\ &= s_i(\langle \omega^i_k,X\rangle\langle\omega^k_j,Y\rangle + X\langle\omega^i_j,Y\rangle - \langle \omega^i_k,Y\rangle\langle\omega^k_j,X\rangle - Y\langle\omega^i_j,X\rangle - \langle \omega^i_j,[X,Y]\rangle)\\ &= s_i(X\langle\omega^i_j,Y\rangle - Y\langle \omega^i_j,X\rangle - \langle \omega^i_j,[X,Y]\rangle + \langle\omega_k^i,X\rangle\langle\omega^k_j,Y\rangle - \langle \omega_k^i,Y\rangle\langle\omega^k_j,X\rangle\\ &= S_i(d\omega^i_j + \omega^i_k\wedge\omega^k_j). \end{align*} From all this, follows that $$ F(X,Y)s_j = s_i(d\omega^i_j + \omega^i_k\wedge\omega^k_j), $$ i.e., $$ \Omega^i_j = d\omega^i_j + \omega^i_k\wedge\omega^k_j $$