The Apéry’s constant and the Airy function

definite integralsintegrationspecial functions

Several weeks ago, while I was playing with a CAS, Wolfram Alpha online calculator I found the closed-form that provided this calculator for $$\int_0^\infty\operatorname{Ai}(x)\log^3(x)dx,\tag{1}$$

involving the Airy function $\operatorname{Ai}(x)$, see this special function from the Wikipedia Airy function.
But I don't know nor if it is in the literature neither nor any hint to get the corresponding indefinite integral (if it is feasible).

Question. Do you know if the closed-form for $$\int_0^\infty\operatorname{Ai}(x)(\log(x))^3dx,\tag{1}$$ in terms of well-known constants and $\zeta(3)$ is in the literature? Provide the reference, and if I can I search it. In other case, can you provide an hint to calculate this kind of definite integral? Many thanks.

Best Answer

You may refer to the entry 9.10.17 of DLMF, which describes the Mellin transform of the Airy function $\operatorname{Ai}$:

$$ \int_{0}^{\infty} t^{\alpha-1}\operatorname{Ai}(t)\,\mathrm{d}t = \frac{\Gamma(\alpha)}{3^{(\alpha+2)/3}\Gamma\big(\frac{\alpha+2}{3}\big)}. \tag{9.10.17}$$

Differentiating both sides with respect to $\alpha$ 3-times and plugging $\alpha = 1$ gives the answer to your integral in terms of polygamma functions with further simplifications available.


Sketch of proof of $\text{(9.10.17)}$. We begin with the integral representation

$$ \operatorname{Ai}(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(\frac{t^3}{3} + xt \right) \, \mathrm{d}t. $$

Taking Mellin transform and switching the order of integration,

\begin{align*} \int_{0}^{\infty} x^{\alpha-1}\operatorname{Ai}(x)\,\mathrm{d}x &= \frac{1}{\pi} \operatorname{Re}\bigg[ \int_{0}^{\infty}\int_{0}^{\infty} x^{\alpha-1} e^{\frac{1}{3}it^3 + ixt} \, \mathrm{d}x\mathrm{d}t \bigg] \\ &= \frac{1}{\pi} \operatorname{Re}\bigg[ \int_{0}^{\infty} \frac{\Gamma(\alpha)}{(-it)^{\alpha}} e^{\frac{1}{3}it^3} \, \mathrm{d}t \bigg] \\ &= \frac{1}{\pi} \operatorname{Re}\bigg[ \Gamma(\alpha) i^{\alpha} \frac{\Gamma\big(\frac{1-\alpha}{3}\big)}{3\cdot(-i/3)^{\frac{1-\alpha}{3}}} \bigg] \\ &= \frac{1}{\pi} \operatorname{Re}\bigg[ \Gamma(\alpha) i^{\frac{2\alpha+1}{3}} \frac{\Gamma\big(\frac{1-\alpha}{3}\big)}{3^{\frac{\alpha+2}{3}}} \bigg] \\ &= \frac{\Gamma(\alpha)\Gamma\big(\frac{1-\alpha}{3}\big)}{\pi 3^{\frac{\alpha+2}{3}}}\cos\big( \tfrac{1}{6}\pi + \tfrac{1}{3}\alpha\pi \big). \end{align*}

Now applying the Euler's reflection formula $\Gamma(s)\Gamma(1-s) = \pi \csc(\pi s)$ with $s = \frac{1-\alpha}{3}$ yields the right-hand side of $\text{(9.10.17)}$.

Related Question