Tail Probabilities of $L^p$ bounded martingale differences

distribution-tailsprobabilityprobability theory

Assume that I have a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ on which we define a sequence of martingale differences $X_1,X_2,\dots$ (w.r.t. to a certain filtration). Further let $p \in (1,2)$ and assume that the $X_i$ are bounded in $L^p$, i.e. there exists $M>0$ such that $$\Vert X_i \Vert_p \leq M$$ for all $i \in \mathbb{N}$.

Does this already imply that I find a random variable $X \in L^p(\Omega, \mathcal{A}, \mathbb{P})$ and a $C > 0$ such that $$\mathbb{P}(\vert X_i \vert > z) \le C \mathbb{P}(\vert X \vert > z)$$
for all $z > 0$, $i \in \mathbb{N}$?

Best Answer

The answer is negative. Suppose that for each $k>2$, the variable $X_k$ takes the values $\pm k^{1/p}$ with probability $k^{-1}$ each, and $P(X_k=0)=1-2k^{-1}$. (We can take $X_k=0$ for $k<2$.) Then $E[|X_k|^p]=2$ for all $k>2$. However, if $X$ satisfies $$\mathbb{P}(\vert X_k \vert > z) \le C \mathbb{P}(\vert X \vert > z)$$ for all $z > 0$ and $k\in \mathbb{N}$, then $$E[|X|^p]=\int_0^\infty\!\! P(|X|^p>x) \,dx \ge \sum_{k=3}^\infty \int_{k-1}^{k}\frac{P(|X_k|^p>x)}{C}=\frac2C\sum_{k=3}^\infty \frac1k=\infty \,.$$

Related Question