Surprisingly simple approximation for particular parameter of definite integral over trigonometric functions

calculusdefinite integralsintegration

In physical problem, I have three following integrals:
$$
\Phi_0(r) = 4\pi r \int_0^{\infty} \frac{\sin(t)}{t} \left( \frac{\sin(r t)}{t(\pi^2-r^2 t^2)}\right)^2 \mathrm{d} t
$$

$$
\Phi_1(r) = 4\pi r \int_0^{\infty} \cos(t) \left( \frac{\sin(r t)}{t(\pi^2-r^2 t^2)}\right)^2 \mathrm{d} t
$$

$$
\Phi_2(r) = 4\pi r \int_0^{\infty} t \sin(t) \left( \frac{\sin(r t)}{t(\pi^2-r^2 t^2)}\right)^2 \mathrm{d} t
$$

I was not able to solve these integrals in elementary functions. However, numerically, I am pretty confident that for the particular set of parameters $r\in (0,0.5)$ they are reduced with precision at least $10^{-10}$ to elementary functions $\Phi_0(r)\simeq 0.202642367284674 r^3$ (correct to $\sim 10^{-14}$), $\Phi_1(r)\simeq\Phi_2(r)\simeq0$.

For $r>0.5$, these integrals are much less trivial and I do not know elementary form.

Probably, these integrals are known. Or maybe anyone knows some hints how to show this numerical result analytically?

Best Answer

Denoting $\displaystyle\alpha=\frac1{2r}$, the answer is the following: $$\Phi_0(r) = 4\pi r \int_0^{\infty} \frac{\sin(t)}{t} \left( \frac{\sin(r t)}{t(\pi^2-r^2 t^2)}\right)^2 \mathrm{d} t$$ $$=\frac{r^3}{\pi^2}\left(2\alpha(2-\alpha)+\frac{1-\alpha}\pi\sin(2\pi\alpha)+\frac2{\pi^2}\big(1-\cos(2\pi\alpha)\big)\right), \alpha\in[0;1]\,\,\big(r\geqslant 1/2\big)\tag{a}$$ $$=\frac{2r^3}{\pi^2};\,\,\alpha\geqslant1\,\big(r\in[0;1/2]\big)\tag{b}$$ Making the substitution $t=\frac xr$ $$\Phi_0(r)=4\pi r^3\int_0^\infty\frac{\sin\frac xr}x\left(\frac{\sin x}{x(\pi^2-x^2)}\right)^2dx\tag{1}$$ $$\Phi_1(r)=4\pi r^2\int_0^\infty\cos\frac xr\left(\frac{\sin x}{x(\pi^2-x^2)}\right)^2dx=r^2\frac d{d\big(\frac1r\big)}\frac{\Phi_0(r)}{r^3}$$ $$\Phi_2(r)=4\pi r\int_0^\infty x\sin\frac xr\left(\frac{\sin x}{x(\pi^2-x^2)}\right)^2dx=-r\,\frac d{d\big(\frac1r\big)}\frac{\Phi_1(r)}{r^2}$$ The evaluation is straightforward. Using (1) and $\sin^2x=\frac{1-\cos(2x)}2$, we can present $\Phi_0(r)$ in the form $$\Phi_0(r)=128\pi r^3\int_0^\infty\frac{\sin\frac x{2r}(1-\cos x)}{x^3\big((2\pi)^2-x^2)^2}dx$$ Using for convenience the notation $\displaystyle \alpha=\frac1{2r}$ $$\Phi_0(r)=64\pi r^3\int_{-\infty}^\infty\frac{\sin\alpha x-\frac12\sin x(1+\alpha)-\frac12\sin x(\alpha-1)}{x^3\big((2\pi)^2-x^2\big)^2}dx$$ $$=64\pi r^3\Im\int_{-\infty}^\infty\frac{e^{i\alpha x}-\frac12e^{ix(1+\alpha)}-\frac12e^{ix(\alpha-1)}}{x^3\big((2\pi)^2-x^2\big)^2}dx$$ Now we go in the complex plane and create the closed contour $C$, adding a big half-circle (counter-clockwise) in the upper half-plane, and three small half-circles (around the points $-2\pi; 0; 2\pi$, clockwise). There are no poles inside the contour; the integral along a big arch $\to0$. Therefore, at $\alpha>1$ (or at $r\in[0;1/2]$) $$J(\alpha)=\oint_C\frac{e^{i\alpha z}-\frac12e^{iz(1+\alpha)}-\frac12e^{iz(\alpha-1)}}{z^3\big((2\pi)^2-z^2\big)^2}dz=\pi\,i \underset{\binom{z=\pm2\pi}{z=0}}{\operatorname{Res}}\frac{e^{i\alpha z}-\frac12e^{iz(1+\alpha)}-\frac12e^{iz(\alpha-1)}}{z^3\big((2\pi)^2-z^2\big)^2}$$ $$\Phi_0(r)=64\pi r^3\Im J(\alpha)=64\pi^2r^3\Re\underset{\binom{z=\pm2\pi}{z=0}}{\operatorname{Res}}\frac{e^{i\alpha z}-\frac12e^{iz(1+\alpha)}-\frac12e^{iz(\alpha-1)}}{z^3\big((2\pi)^2-z^2\big)^2}$$ At $\alpha<1$ we present $\Phi_0(r)$ in the form $$\Phi_0(r)=64\pi r^3\int_{-\infty}^\infty\frac{\sin\alpha x-\frac12\sin x(1+\alpha)+\frac12\sin x(1-\alpha)}{x^3\big((2\pi)^2-x^2\big)^2}dx$$ $$\Phi_0(r)=64\pi^2r^3\Re\underset{\binom{z=\pm2\pi}{z=0}}{\operatorname{Res}}\frac{e^{i\alpha z}-\frac12e^{iz(1+\alpha)}+\frac12e^{iz(1-\alpha)}}{z^3\big((2\pi)^2-z^2\big)^2}$$ The residues evaluation in both cases is straightforward and gives the answer presented above.

We expect that $\Phi_0(r)$ is a continuous function. Indeed, at $\alpha =1\,\,(a)=(b)$ (above), and at $\alpha\to 0 \,\,\Phi_0=0$.

Quick numeric check (I did it at $\alpha=\frac14\,\,(r=2)$ ) confirms the result. The answer also reproduces the asymptotics obtained by @Sal in his post.

Related Question