Supremum of brownian motion almost surely > 0

brownian motionstochastic-processes

Is it true that
\begin{equation}
M_t = \sup_{s \leq t} B_s > 0 \ \ \text{a.s.}
\end{equation}

for all $t>0$? I remember reading this somewhere, but intuitively, can't the Brownian motion B stay below 0 for some time with probability $>0$?

Best Answer

One way to argue is using Blumenthal's zero one law. Define $A_n=\{B_{1/n}>\frac{1}{\sqrt{n}}\}$, and set $B=\{B_{1/n}>\frac{1}{\sqrt{n}} ~\text{i.o.}\} $

Then, \begin{align*} \mathbb{P}(B) &=\mathbb{P}(\limsup_n A_n)\\ &\geq \limsup_n\mathbb{P}( A_n)\\ &= \limsup_n\mathbb{P}(B_{1/n}>\frac{1}{\sqrt{n}})\\ &=\limsup_n\mathbb{P}(N(0,1)>1)\\ &=\mathbb{P}(N(0,1)>1)=M>0 \end{align*}

By Blumenthal's zero one law $\mathbb{P}(B)= 1 ~\text{or}~0$. So $\mathbb{P}(B)=1$.

Related Question