$ \sum_{n=2}^{\infty} \frac{(\sin{n})\sum\limits_{k=1}^{n} \frac{1}{k}}{(\log n)^2}$ is convergent or not

calculusreal-analysissequences-and-series

Determine if $ \sum_{n=2}^{\infty} \frac{(\sin{n})\sum\limits_{k=1}^{n} \frac{1}{k}}{(\log n)^2}$ is convergent or divergent.


[My attempt]

It seems like Dirichlet test, so I tried to show that $a_n := \frac{\sum\limits_{k=1}^{n} \frac{1}{k}}{(\log n)^2}$ is decreasing and converges to zero.

By the integral test proof, I know that
$$
\int_1^{n+1}\frac{dx}{x}\leq\sum_{k=1}^n\frac{1}{k}\leq 1+\int_1^{n}\frac{dx}{x}
$$

Since $\int\frac{dx}{x}=\ln(x)+C$, I can calculate that $a_n$ converges to zero by the squeeze theorem.

However, I can't show that $a_n$ is a monotonic decreasing sequence…

How to solve this?

Best Answer

$$ \frac{\sum_{k=1}^{n} \frac{1}{k}}{(\log{n})^2} \ \ \lor \ \ \frac{\sum_{k=1}^{n+1} \frac{1}{k}}{(\log{(n+1)})^2}$$

$$ \left(\sum_{k=1}^{n} \frac{1}{k}\right) \log^2(n+1) - \left(\sum_{k=1}^{n+1} \frac{1}{k}\right) \log^2(n) \ \ \lor \ \ 0$$

$$ \left(\sum_{k=1}^{n} \frac{1}{k}\right) \left[\log^2(n+1) - \log^2(n)\right] - \frac{1}{n+1} \log^2(n) > \\ \{\log^2(n+1) - \log^2(n) > 0\ \ \text{for} \ \ n > 1 \} \\ \log(n+1) \left[\log^2(n+1) - \log^2(n)\right] - \frac{1}{n+1} \log^2(n) > 0 $$

Last inequality flows from Wolfram, but I'm not sure, how to prove it strictly. Any help with it?