Sum the inverse of the successor of the square of the natural numbers

laplace transformsummation

I was thinking if I could solve the sum $\sum_{n=1}^\infty \frac{1}{n^2+1}$, and I reached using the laplace transform of the sine at the integral $\int_0^\infty \frac{\sin(t)}{e^t-1} dt$. I entered the sum into Wolfram Alpha, and it gave me $\frac{1}{2}(\pi \coth(\pi) – 1)$. How it reached this value?? If someone can help me, I will be grateful.

MY TRY: $$\sum_{n=1}^\infty \frac{1}{n^2+1}=\sum_{n=1}^\infty \mathcal{L}(\sin(t))(s = n) = \sum_{n=1}^\infty \int_0^\infty \sin(t)e^{-nt}dt=\int_0^\infty \sin(t)\sum_{n=1}^\infty e^{-nt} dt$$
Observe that $\sum_{n=1}^\infty e^{-nt} = \frac{e^-t}{1-e^-t} = \frac{1}{e^t-1}$. Then $$\sum_{n=1}^\infty \frac{1}{n^2+1}=\int_0^\infty \frac{\sin(t)}{e^t-1}dt$$

Best Answer

The more general formula is $\;\displaystyle \sum_{n=1}^\infty \frac 1{n^2 + a^2} = \frac{a \pi \coth(a \pi) - 1}{2 a^2}$.

This may be obtained using the Fourier series for $\cosh(z x)$ as in this answer for $\cos(z x)$

Substitute $z=i a\,$ in the answer to convert

$$\cot(\pi z)=\frac 1{\pi}\left[\frac1{z}-\sum_{k=1}^{\infty}\frac{2z}{k^2-z^2}\right]$$

to (since $\;\cot(\pi ia)=-i \coth(\pi a)$) $$\coth(\pi a)=\frac 1{\pi}\left[\frac1{a}+\sum_{k=1}^{\infty}\frac{2a}{k^2+a^2}\right]$$