Studying the convergence of the series $\sum_{n=1}^\infty\sin\frac1{n}\log\left(1+\sin\frac1{n}\right)$

convergence-divergencereal-analysissequences-and-series

Study the convergence of the series

$$\sum_{n=1}^\infty\sin\frac1{n}\log\left(1+\sin\frac1{n}\right)$$

This is what I came up with

$$\lim_{x\to \infty}\frac{\sin\frac1{n}\log\left(1+\sin\frac1{n}\right)}
{\sin^2\frac1{n}}= 1 $$
This implies that

$$\sin\frac1{n}\log\left(1+\sin\frac1{n}\right) \sim {\sin^2\frac1{n}}$$

using the inequality $\sin{x}\lt x$ $\left(0\le x \lt \pi\right)$

$${\sin^2\frac1{n}} \lt \frac1{n^2}$$

Since $\sum_{n=1}^\infty\frac1{n^2}$ converges so does $\sum_{n=1}^\infty\sin^2\frac1{n}$ this implies the convergence of $$\sum_{n=1}^\infty\sin\frac1{n}\log\left(1+\sin\frac1{n}\right)$$

Is this right?

Best Answer

Thanks to Mark Viola comment, we know $\dfrac{1}{n}<1$ is in first quadrant so $\sin\dfrac{1}{n}>0$, then $$\sum_{n=1}^\infty\left(\sin\frac{1}{n}\right)\ln\left(1+\sin\frac1{n}\right)<\sum_{n=1}^\infty\left(\sin\frac{1}{n}\right)^2<\sum_{n=1}^\infty\frac{1}{n^2}=\zeta(2)$$

Related Question