Step function of Poisson distributed number of uniformly distributed RVs is Poisson process

poisson distributionpoisson processprobability theorystochastic-processesuniform distribution

I want to proof this:

Let $N,X_1,X_2,\dots$ be independent RVs, $N$ Poisson distributed and the $X_k\sim\text{Unif}([0,1])$. Then
$$
N_t:=\sum_{k=1}^N 1_{[0,t]}(X_k)\quad (t\in [0,1])
$$

is a Poisson process (restricted to $t\in[0,1]$), i.e. $N_t(\omega)$ is an increasing and right-continuous step-function with jumps of size one and $N_t-N_s\sim\text{Pois}(\lambda(t-s))$ for some parameter $\lambda$.

I don't know how to show that the increments are Poisson distributed. I've tried this, but I don't know how to proceed or if this is even the right approach:

$$
N_t-N_s=\sum_{k=1}^N 1_{[0,t]}(X_k)-\sum_{k=1}^N 1_{[0,s]}(X_k)=\sum_{k=1}^N 1_{(s,t]}(X_k)
$$

It's obvious that

$$
P(X_k\in(s,t])=t-s\ \text{ and } P(X_k\in[0,s])=s
$$

So to calculate $P(N_t-N_s=n)$, $n\in\mathbb{N}$, we need to calculate the probability that exactly $n$ of the $X_k$ are in $(s,t]$ and $N-n$ of the $X_k$ are in $[0,s]$, which is

$$
P(|\{k\leq N : X_k\in (s,t]\}|=n,\ |\{k\leq N : X_k\in[0,s]\}|=N-n) \\
= \binom{N}{n}(t-s)^ns^{N-n}
$$

So somehow I ended up with an binomial distribution and there is also missing the probability that $N\geq n$ and I don't know how to combine that and receive a Poisson distribution as result.

Thanks for any help!

Best Answer

In the understanding that $\binom{k}{n}=0$ if $n$ exceeds $k$ we have:$$P\left(N_{t}-N_{s}=n\mid N=k\right)=\binom{k}{n}\left(t-s\right)^{n}\left(1-t+s\right)^{k-n}$$

Note that you should take $1-t+s$ here (and not $s$).

Also be aware that $N$ is a random variable.

Working this out we find:

$\begin{aligned}P\left(N_{t}-N_{s}=n\right) & =\sum_{k=n}^{\infty}P\left(N=k\right)P\left(N_{t}-N_{s}=n\mid N=k\right)\\ & =\sum_{k=n}^{\infty}e^{-\lambda}\frac{\lambda^{k}}{k!}\binom{k}{n}\left(t-s\right)^{n}\left(1-t+s\right)^{k-n}\\ & =\sum_{k=n}^{\infty}e^{-\lambda}\frac{\lambda^{k}}{n!\left(k-n\right)!}\left(t-s\right)^{n}\left(1-t+s\right)^{k-n}\\ & =\sum_{k=0}^{\infty}e^{-\lambda}\frac{\lambda^{k+n}}{n!k!}\left(t-s\right)^{n}\left(1-t+s\right)^{k}\\ & =e^{-\lambda}\frac{\lambda^{n}}{n!}\left(t-s\right)^{n}\sum_{k=0}^{\infty}\frac{\lambda^{k}\left(1-t+s\right)^{k}}{k!}\\ & =e^{-\lambda\left(t-s\right)}\frac{\left[\lambda\left(t-s\right)\right]^{n}}{n!} \end{aligned} $

Related Question