Stability of non-homogeneous ODE

ordinary differential equationsstability-theory

I try to examine stability of non-homogeneous ODE system:
\begin{cases} Dy_{1} = y_{1}+2y_{2} +\frac{3}{x^4} \\ Dy_{2}= 3y_{1}+4y_{2}+ \frac{3}{x^4} \end{cases}

I tried to find solutions of such system and then examine whether solutions are stable, but I can't find them, is there any other method to determine stability of such system?

Best Answer

First, solve the homogeneous equation:

$$Dy_1=y_1+2y_2$$ $$Dy_2=3y_1+4y_2$$

I am assuming you already know how to do this, so I will just write the solution here:

$$\left[\begin{matrix} y_1 \\ y_2\end{matrix}\right]=\left[\begin{matrix} \frac{1}{6}(-3-\sqrt{33})e^{(5-\sqrt{33})/2} & \frac{1}{6}(-3+\sqrt{33})e^{(5+\sqrt{33})/2} \\ e^{(5-\sqrt{33})/2} & e^{(5+\sqrt{33})/2}\end{matrix}\right]\left[\begin{matrix} c_1 \\ c_2\end{matrix}\right] \text{ where } c_1,c_2\in\mathbb{R}$$

Since there is one negative eigenvalue $\frac{5-\sqrt{33}}{2}$ and one positive eigenvalue $\frac{5+\sqrt{33}}{2}$, the origin is a saddle point and the system is unstable. Therefore, at the very least, you now know the stability of the ODE system.

Now, to actually solve the non-homogeneous equation, use variation of parameters by changing $c_1,c_2$ to $u_1(t),u_2(t)$:

$$\left[\begin{matrix} y_1 \\ y_2\end{matrix}\right]=\left[\begin{matrix} \frac{1}{6}(-3-\sqrt{33})e^{(5-\sqrt{33})/2} & \frac{1}{6}(-3+\sqrt{33})e^{(5+\sqrt{33})/2} \\ e^{(5-\sqrt{33})/2} & e^{(5+\sqrt{33})/2}\end{matrix}\right]\left[\begin{matrix} u_1(t) \\ u_2(t)\end{matrix}\right]$$ $$\left[\begin{matrix} \frac{1}{6}(-3-\sqrt{33})e^{(5-\sqrt{33})/2} & \frac{1}{6}(-3+\sqrt{33})e^{(5+\sqrt{33})/2} \\ e^{(5-\sqrt{33})/2} & e^{(5+\sqrt{33})/2}\end{matrix}\right]\left[\begin{matrix} u_1'(t) \\ u_2'(t)\end{matrix}\right]=\left[\begin{matrix} \frac{3}{x^4} \\ \frac{3}{x^4}\end{matrix}\right]$$

Here, you can use the second equation to solve for $u_1'(t),u_2'(t)$, integrate to solve for $u_1(t),u_2(t)$, and then plug into the first equation to solve for $y_1,y_2$. Good luck!

Related Question