Solving the recurrence $T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1$

discrete mathematicsrecurrence-relations

I have this recurrence relation:

$$T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1$$

and I should solve it with $n = 2^m$

$$\begin{align}
T(2^m)
&= T\left(\left\lceil \frac{2^m}{2} \right\rceil\right)
+ T\left(\left\lfloor \frac{2^m}{2} \right\rfloor\right) + 1 \\[6pt]
&= T\left(\left\lceil 2^{m-1} \right\rceil\right) + T\left(\left\lfloor 2^{m-1} \right\rfloor\right) + 1 \\[4pt]
&=2\cdot T(2^{m-1}) + 1
\end{align}$$

but now I am stuck. How can I get rid of $T(2^{m-1})$?

Best Answer

Let $$T(2^m)+1=a_m$$ Then $$a_m = 2a_{m-1}$$ Hence, it forms a geometric progression. So the general term is $$a_m=2^ma_0$$ $$\implies T(2^m)=2^mT(1)+2^m-1$$ Hope you can proceed now.

Related Question