Solving PDE with Feynman-Kac Formula

brownian motionexpectationpartial differential equationsstochastic-analysisstochastic-processes

I have the following PDE:

$$\begin{cases}
\left (-\partial_t + \mu x \partial_x + \dfrac{1}{2} \sigma^2 x^2 \partial_x^2 \right )u = -f(t, x)\\
u(0, x) = 0
\end{cases}$$

where $f(t, x) = x^2 \left ( (\mu + \sigma^2 ) e^{\mu t} – \left (\mu + \frac{1}{2}\sigma^2\right )\right )$.

Since $\mu x \partial_x + \dfrac{1}{2} \sigma^2 x^2 \partial_x^2$ is the infinitesimal generator of a Geometric Brownian Motion with drift $\mu$ and volatility $\sigma$, by Feynman-Kac the solution should be given by:

$$u(t, x) = \mathbb{E}^x \left (\int_0^t f(s, X_s)dx\right )$$

where $X$ has dynamics

$$dX_t = \mu X_t dt + \sigma X_t dW_t.$$

I know that the exact solution should be $u(t, x) = \frac{1}{2} x^2 \left ( e^{(2\mu + \sigma^2) t} – 2e^{\mu t} + 1\right )$. However, when I try to compute the solution using Feynman-Kac, I get:

$$u(t, x) = \int_0^t \mathbb{E}^x (f(s, X_s))ds = \int_0^t x^2 e^{(2\mu + \sigma^2) s}\left ( (\mu + \sigma^2 ) e^{\mu s} – \left (\mu + \frac{1}{2}\sigma^2\right )\right ) ds$$ which doesn't agree with the above solution.

What am I doing wrong?

Best Answer

Almost. It should be $u(t,x)=\Bbb E^x\left(\int_0^t f(t-s,X_s)\,ds\right)$.

Related Question