Solving $\int_{0}^{\infty} \frac{\sin(x)}{x^3}dx$

improper-integralsintegration

In my attempt to solve the this improper integral, I employed a well known improper integral (part of the Borwein family of integrals):

$$ \int_{0}^{\infty} \frac{\sin\left(\frac{x}{1}\right)\sin\left(\frac{x}{3}\right)\sin\left(\frac{x}{5}\right)}{\left(\frac{x}{1}\right)\left(\frac{x}{3}\right)\left(\frac{x}{5}\right)} \: dx = \frac{\pi}{2}$$

To begin with, I made a simple rearrangement

$$ \int_{0}^{\infty} \frac{\sin\left(\frac{x}{1}\right)\sin\left(\frac{x}{3}\right)\sin\left(\frac{x}{5}\right)}{x^3} \: dx = \frac{\pi}{30}$$

From here I used the Sine/Cosine Identities

$$ \int_{0}^{\infty} \frac{\frac{1}{4}\left(-\sin\left(\frac{7}{15}x\right)+ \sin\left(\frac{13}{15}x\right) + \sin\left(\frac{17}{15}x\right) -\sin\left(\frac{23}{15}x\right) \right)}{x^3} \: dx = \frac{\pi}{30}$$

Which when expanded becomes

$$ -\int_{0}^{\infty} \frac{\sin\left(\frac{7}{15}x\right)}{x^3}\:dx + \int_{0}^{\infty} \frac{\sin\left(\frac{13}{15}x\right)}{x^3}\:dx +
\int_{0}^{\infty} \frac{\sin\left(\frac{17}{15}x\right)}{x^3}\:dx –
\int_{0}^{\infty} \frac{\sin\left(\frac{23}{15}x\right)}{x^3}\:dx
= \frac{2\pi}{15}$$

Using the property

$$\int_{0}^{\infty}\frac{\sin(ax)}{x^3}\:dx = a^2 \int_{0}^{\infty}\frac{\sin(x)}{x^3}\:dx$$

We can reduce our expression to

$$\left[ -\left(\frac{7}{15}\right)^2 + \left(\frac{13}{15}\right)^2 + \left(\frac{17}{15}\right)^2 – \left(\frac{23}{15}\right)^2\right] \int_{0}^{\infty} \frac{\sin(x)}{x^3}\:dx = \frac{2\pi}{15}$$

Which simplifies to

$$ -\frac{120}{15^2}\int_{0}^{\infty} \frac{\sin(x)}{x^3}\:dx = \frac{2\pi}{15}$$

And from which we arrive at

$$\int_{0}^{\infty} \frac{\sin(x)}{x^3}\:dx = -\frac{\pi}{4}$$

Is this correct? I'm not sure but when I plug into Wolframalpha it keeps timing out…

Best Answer

$$-\int_{0}^{\infty} \frac{\sin\left(\frac{7}{15}x\right)}{x^3}\:dx + \int_{0}^{\infty} \frac{\sin\left(\frac{13}{15}x\right)}{x^3}\:dx + \int_{0}^{\infty} \frac{\sin\left(\frac{17}{15}x\right)}{x^3}\:dx - \int_{0}^{\infty} \frac{\sin\left(\frac{23}{15}x\right)}{x^3}\:dx = \frac{2\pi}{15}$$

You cannot expand the integrals since they are not convergent.
Moreover, given that $\int_a^b f(x)+g(x)dx$ converges, $\int_a^b f(x)+g(x)dx=\int_a^b f(x)dx+\int_a^b g(x)dx$ only if $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ converge.

Related Question