Solving a first order ordinary differential equation by transforming to an homogeneous equation

ordinary differential equations

The following problem is from the book "Introduction to Ordinary Differential Equations" By Shepley L. Ross. It is problem number 7 in section 2.4.

Problem:
Solve the following differential equations by making a suitable transformation.
$$ ( 5x + 2y + 1) \, dx + ( 2x + y + 1) \, dy = 0 $$
Answer:
We want to transform this to a homogeneous differential equation. So we set up the following system of linear equations.
\begin{align*}
5x + 2y + 1 &= 0 \\
2x + y + 1 &= 0 \\
y &= -2x – 1 \\
5x + 2 ( -2x – 1 ) + 1 &= 0 \\
5x – 4x – 2 + 1 &= 0 \\
x &= 1 \\
y &= -2(1) – 1 = -3 \\
x_1 &= x – 1 \\
y_1 &= y + 3 \\
( 5(x_1 + 1) + 2(y_1 – 3) + 1) \, dx + ( 2(x_1 + 1) + y_1 – 3 + 1) \, dy = 0 \\
( 5x_1 + 5 + 2y_1 – 6 + 1) \, dx + ( 2x_1 + 2 + y_1 – 3 + 1) \, dy = 0 \\
\end{align*}

Now we note that $dx_1 = dx$ and $dy_1 = dy$.
\begin{align*}
( 5x_1 + 2y_1 ) \, dx_1 + ( 2x_1 + y_1 ) \, dy_1 &= 0 \\
( 5x_1 + 2y_1 ) \, dx_1 &= -( 2x_1 + y_1 ) \, dy_1 \\
\frac{dy_1}{dx_1} &= -\frac{ 5x_1 + 2y_1 }{2x_1 + y_1 }
= -\frac{ 5 + 2\left( \frac{y_1}{x_1}\right) }{2 + \left( \frac{y_1}{x_1} \right) }
\end{align*}

Now let $v = \frac{y_1}{x_1}$. This gives us:
\begin{align*}
y_1 &= x_1 v \\
\frac{dy_1}{dx_1}&= x_1 \frac{dv}{dx_1} + v \\
x_1 \frac{dv}{dx_1} + v &= – \frac{5 + 2v}{2 + v} \\
x_1 \frac{dv}{dx_1} &= \frac{-5 – 2v – 2 – v}{2 + v} = – \frac{3v+7}{v+2} \\
\frac{v+2}{3v+7} \, dv &= – \frac{dx_1}{x}
\end{align*}

Now we need to integrate both sides. Using an online integral calculator, I find:
$$ \int \frac{v+2}{3v+7} \, dv = \frac{ – \ln{|3v+7|} }{9} – \frac{v}{3} – C_1 $$
\begin{align*}
\frac{ – \ln{|3v+7|} }{9} – \frac{v}{3} – C_1 &= -\ln{|x_1|} \\
\ln{|3v+7|} + 3v + C_1 &= 9\ln{|x_1|} \\
\ln{|3v+7|} + \ln{e^{3v}} + C_1 &= 9\ln{|x_1|} \\
\ln{|3v+7|} + \ln{e^{3v}} – 9\ln{|x_1|} &= -C_1 \\
\frac{(3v+7)e^{3v}}{x_1^9} &= C_2
\end{align*}

The book's answer is:
$$ 5x^2 + 4xy + y^2 + 2x + 2y = c $$
My answer is not going to match. Where did I go wrong?

Here is my second attempt to solve the problem. I believe I have it right now. If I do not, please tell me I am still wrong.

We want to transform this to a homogeneous differential equation. So we set up the following system of linear equations.
\begin{align*}
5x + 2y + 1 &= 0 \\
2x + y + 1 &= 0 \\
y &= -2x – 1 \\
5x + 2 ( -2x – 1 ) + 1 &= 0 \\
5x – 4x – 2 + 1 &= 0 \\
x &= 1 \\
y &= -2(1) – 1 = -3 \\
x_1 &= x – 1 \\
y_1 &= y + 3 \\
( 5(x_1 + 1) + 2(y_1 – 3) + 1) \, dx + ( 2(x_1 + 1) + y_1 – 3 + 1) \, dy = 0 \\
( 5x_1 + 5 + 2y_1 – 6 + 1) \, dx + ( 2x_1 + 2 + y_1 – 3 + 1) \, dy = 0 \\
\end{align*}

Now we note that $dx_1 = dx$ and $dy_1 = dy$.
\begin{align*}
( 5x_1 + 2y_1 ) \, dx_1 + ( 2x_1 + y_1 ) \, dy_1 &= 0 \\
( 5x_1 + 2y_1 ) \, dx_1 &= -( 2x_1 + y_1 ) \, dy_1 \\
\frac{dy_1}{dx_1} &= -\frac{ 5x_1 + 2y_1 }{2x_1 + y_1 }
= -\frac{ 5 + 2\left( \frac{y_1}{x_1}\right) }{2 + \left( \frac{y_1}{x_1} \right) }
\end{align*}

Now let $v = \frac{y_1}{x_1}$. This gives us:
\begin{align*}
y_1 &= x_1 v \\
\frac{dy_1}{dx_1}&= x_1 \frac{dv}{dx_1} + v \\
x_1 \frac{dv}{dx_1} + v &= – \frac{5 + 2v}{2 + v} \\
x_1 \frac{dv}{dx_1} &= \frac{-5 -2v – v(v+2)}{v+2} = \frac{-5 -2v – v^2 – 2v}{v+2} \\
-x_1 \frac{dv}{dx_1} &= \frac{v^2+4v+5}{v+2} \\
\frac{ (v+2) \, \, dv }{v^2 + 4v + 5} &= -\frac{dx_1}{x}
\end{align*}

Using an online integral calculator, I find:
$$ \int \frac{v+2}{v^2+4v+5} \,\, dv = \frac{ \ln{(v^2 + 4v + 5)}}{2} + C_1$$
\begin{align*}
– \ln{|x_1|} &= \frac{ \ln{(v^2 + 4v + 5)}}{2} + C_1 \\
– 2 \ln{|x_1|} &= \ln{( v^2 + 4v + 5)} + 2C_1 \\
\ln{(v^2 + 4v + 5)} + 2 \ln{|x_1|} &= -2C_1 \\
x_1 ^2 ( v^2 + 4v + 5) &= C_2 \\
x_1^2 \left( \frac{y_1^2}{x_1^2} + \frac{4y_1}{x_1} + 5 \right) &= C_2 \\
y_1^2 + 4x_1 y_1 + 5x_1 ^2 &= C_2 \\
(y+3)^2 + 4(x-1)(y+3) + 5(x-1)^2 &= C_2 \\
y^2 + 6y + 9 + 4(xy + 3x – y – 3) + 5(x^2 – 2x + 1) &= C_2 \\
5x^2 + 4xy + 2x + 2y + y^2 + 2 &= C_2 \\
\end{align*}

Hence the answer we seek is:
$$ 5x^2 + 4xy + y^2 + 2x + 2y = c $$
The book's answer is:
$$ 5x^2 + 4xy + y^2 + 2x + 2y = c $$
My answer now matches.

Best Answer

You're mistake is towards the end (fortunately): \begin{align} x_1\dfrac{dv}{dx_1}+v & =-\dfrac{5+2v}{2+v}\\ -x_1\dfrac{dv}{dx_1}-v & =\dfrac{5+2v}{2+v}\\ -x_1\dfrac{dv}{dx_1}& =\dfrac{5+2v+v(2+v)}{2+v}\\ -x_1\dfrac{dv}{dx_1} & =\dfrac{5+4v+v^2}{2+v}\\ \end{align}