Solve $x^{y^z}=z$

lambert-wpower-towers

Initially I isolated the y in $x^y=y$, but I just wanted to expand the infinite power tower to two letters in the tower, but I can't solve for z in the equation $x^{y^z}=z$. I tried to use Lambert W Function but I can't get the form $ze^{z}$ or something like this. I will be thankful if someone help me.

Best Answer

Series solution:

$\def\B{\operatorname B}$

Using $\ln(x)=a,\ln(y)=b$ and Lagrange reversion we get a series for “Hyper Lambert W”

$$x^{y^z}=e^{ae^{bz}}=z\implies z=\sum_{n=1}^\infty \frac1{n!}\left.\frac{d^{n-1}}{dz^{n-1}}e^{ane^{bz}}\right|_{z=0}$$

$e^y$ series:

$$\left.\frac{d^{n-1}}{dz^{n-1}}(e^{ane^{bz}})\right|_{z=0}=\sum_{m=1}^\infty\frac{(an)^m}{m!}\left.\frac{d^{n-1}}{dz^{n-1}}e^{mbz}\right|_{z=0}=\sum_{m=1}^\infty\frac{(an)^m (bm)^{n-1}}{m!}$$

and finally Bell B$_n(x)$ polynomials to get:

$$\boxed{e^{ae^{bz}}=z=1+\frac1b\sum_{n=1}^\infty \frac{(ae^b)^n}{nn!}\B_n(b n)=\frac1b\sum_{n=1}^\infty\frac{(b e^a)^n}{n!}\B_{n-1}(an)}$$

Shown here

Experimental:

A contour integral representation is:

$$\B_n(x)=\frac{n!}{2\pi i}\oint\frac{e^{x(e^t-1)}}{t^{n+1}}dt$$

There are no integral bounds and I have little experience with contour integrals. In case switching the contour integral and sum works:

$$e^{ae^{bz}}=z\mathop=^?1+\frac i{2\pi b}\oint\frac{\ln\left(1-\frac{ae^{be^t}}t\right)}tdt\mathop=^?\frac i{2\pi b}\oint\frac{\ln\left(1-\frac{be^{ae^t}}t\right)}tdt$$

Related Question