Solve $xu_x+(x+y)u_y=1$ when $u(1,y)=y$

characteristicsordinary differential equationspartial differential equations

Solve the following PDE

$$xu_x+(x+y)u_y=1$$ when $$u(1,y)=y$$ using method of characteristics and find the projections of the characteristics on the xy plane

$$\begin{cases}
a=x\\
b=x+y\\
c=1
\end{cases}\Rightarrow \begin{cases}
\frac{dx}{dt}=x\iff \frac{dx}{x}=dt\iff ln(x)=t+c_1\iff x=ke^t\\
\frac{dy}{dt}=x+y\iff \frac{dy}{dt}=ke^t+y\iff y=(kt+m)e^t\\
\frac{du}{dt}=1\iff du=dt\iff u=t+c_2
\end{cases}$$

How do I solve $?_1$ and what should be my next step?

Best Answer

$$xu_x+(x+y)u_y=1$$ You have got the correct system of equation which can be written on this form : $$\frac{dx}{x}=\frac{dy}{x+y}=\frac{du}{1}=dt$$ Solving $\frac{dx}{x}=\frac{dy}{x+y}$ gives a first characteristic $$\frac{y}{x}-\ln|x|=c_1$$ Solving $\frac{dx}{x}=\frac{du}{1}$ gives a second characteristic $$u-\ln|x|=c_2$$ The general solution of the PDE is $u-\ln|x|=F\left(\frac{y}{x}-\ln|x|\right)$ $$u(x,y)=\ln|x|+F\left(\frac{y}{x}-\ln|x|\right)$$ where $F$ is an arbitrary function.

This function is determined according to the boundary condition :

$u(1,y)=y=\ln|1|+F\left(\frac{y}{1}-\ln|1|\right)=F(y)$

Thus $F(y)=y$ and as a consequence $F\left(\frac{y}{x}-\ln|x|\right)=\frac{y}{x}-\ln|x|$ .

$u(x,y)=\ln|x|+\left(\frac{y}{x}-\ln|x|\right)$

The final solution is : $$u(x,y)=\frac{y}{x}$$

Related Question