Solve limit of $(n-1)\left[1-\left(1-\left(\frac{\lambda}{n}\right)^2\right)^{n-1}\right]$

calculuslimits

I'm trying to find the solution to the following limit:
$$
\lim_{n\rightarrow\infty}(n-1)\left[1-\left(1-\left(\frac{\lambda}{n}\right)^2\right)^{n-1}\right]\ \mathrm{.}
$$

I've tried decomposing the limit and writing it as
$$
\lim_{n\rightarrow\infty}(n-1)\left[1-\left(1-\frac{\lambda}{n}\right)^{n}\left(1+\frac{\lambda}{n}\right)^n\left(1-\left(\frac{\lambda}{n}\right)^2\right)^{-1}\right]\ \mathrm{,}
$$

so I can use that
$$
\lim_{n\rightarrow\infty}\left(1\pm\frac{\lambda}{n}\right)^{n}=e^{\pm\lambda}\mathrm{,}
$$

but the problem seems to be that I cannot split the products or the sums within the limit into separate limits as $\lim_{n\rightarrow\infty}(n-1)$ does not converge. The answer should be $\lambda^2$ (this is also what Wolfram gives me), but I don't see a way to get to that answer myself. I'd rather not resort to the Laurent series, as this is also a nightmare to compute. Can anyone help?

Best Answer

We have that by $\log (1+x)=x+O(x^2)$ and $e^x=1+x+O(x^2)$

$$\left(1-\left(\frac{\lambda}{n}\right)^2\right)^{n-1}=e^{(n-1)\log\left(1-\left(\frac{\lambda}{n}\right)^2\right)}=e^{-\frac{(n-1)\lambda^2}{n^2}+O\left(\frac1{n^3}\right)}=1-\frac{(n-1)\lambda^2}{n^2}+O\left(\frac1{n^3}\right)$$

therefore

$$(n-1)\left[1-\left(1-\left(\frac{\lambda}{n}\right)^2\right)^{n-1}\right]=\frac{(n-1)^2\lambda^2}{n^2}+O\left(\frac1{n^2}\right) \to \lambda^2$$

Related Question