Solve for $x$: $\lfloor 2^x\rfloor+\lfloor 3^x\rfloor=\lfloor 6^x\rfloor$

algebra-precalculuscalculusceiling-and-floor-functions

Solve for $x$: $\lfloor 2^x\rfloor+\lfloor 3^x\rfloor=\lfloor 6^x\rfloor$

My Attempt:

Clearly the equation is satisfied for all $x<0$.

For positive $x$,

$2^x+3^x-6^x=\{2^x\}+\{3^x\}-\{6^x\}$

$-1<\{2^x\}+\{3^x\}-\{6^x\}<2$

where $\{x\}=x-\lfloor x\rfloor$

After this I am not able to conclude anything

Best Answer

Extending my comment as a solution, for $x\in(0,1)$, $\lfloor 2^x \rfloor = 1$, $\lfloor 3^x \rfloor = \begin{cases}1, x < \log_3(2)\\ 2, x\ge \log_3(2) \end{cases}$ and $$\lfloor 6^x \rfloor = \begin{cases}1, x < \log_6(2)\\ 2, \log_6(2) \le x< \log_6(3) \\ 3, \log_6(3) \le x< \log_6(4) \\ 4, \log_6(4) \le x< \log_6(5) \\ 5, \log_6(5) \le x< 1 \end{cases}.$$ Therefore, the left side is either $2$ for $x<\log_2(3)$ or $3$ for $x\ge \log_2(3)$. Thus the solution is $$(\log_{6}\left(2\right),\log_{6}\left(3\right)) \cup (\log_{3}\left(2\right),\log_{6}\left(4\right))$$

Edit : From the inequality $6^x \ge 2^x+3^x+1$, we can take floor$()$ both sides as it an increasing function. Now since $\lfloor x+y \rfloor = \lfloor x \rfloor+\lfloor y \rfloor$ or $\lfloor x \rfloor+\lfloor y \rfloor+1$, we get $$\lfloor 6^x \rfloor \ge \lfloor 2^x \rfloor+\lfloor 3^x \rfloor +1 > \lfloor 2^x \rfloor+\lfloor 3^x \rfloor.$$

Related Question