Solve a second order partial differential equation involving a delta Dirac function

calculusdirac deltaelliptic-equationsgreens functionpartial differential equations

In a mathematical physical problem, I came across the following partial differential equation involving a delta Dirac function:
$$
a \, \frac{\partial^2 w}{\partial x^2}
+ b \, \frac{\partial^2 w}{\partial y^2}
+ \delta^2(x,y) = 0 \, ,
$$

subject to the boundary conditions $w(x = \pm 1, y) = w(x, y = \pm 1) = 0$.
Here $a, b \in \mathbb{R}_+$ and $\delta^2(x,y) = \delta(x)\delta(y)$ is the two-dimensional delta Dirac function.

While solutions for ODEs with delta Dirac functions can readily be obtained using the standard approach, I am not aware of any resolution recipe for PDEs with delta Dirac functions.

Any help or hint is highly desirable and appreciated.

Thank you

Best Answer

Use an ansatz of the form

$$ w(x,y) = \sum_{n,m=1}^\infty c_{n,m} \sin \left(n\pi \frac{1+x}{2}\right)\sin\left(m\pi \frac{1+y}{2}\right) $$

Decomposing the delta function into its Fourier series gives

$$ \delta(x,y) = \sum_{n,m=1}^\infty \sin \left(\frac{n\pi}{2}\right)\sin\left( \frac{m\pi}{2}\right)\sin \left(n\pi \frac{1+x}{2}\right)\sin\left(m\pi \frac{1+y}{2}\right) $$

Plugging the above expressions into the equation gives

$$ -\left[a\left(\frac{n\pi}{2}\right)^2 + b\left(\frac{m\pi}{2}\right)^2\right]c_{n,m} = -\sin \left(\frac{n\pi}{2}\right)\sin\left( \frac{m\pi}{2}\right) $$

Related Question