Solution to this hypergeometric function-beta function product integral

beta functiondefinite integralshypergeometric functionintegration

I am trying to calculate the energy of a system, and have reduced part of it down to an integral;
$$
\int^\infty_0 \frac{ t^{\frac{5}{\alpha}-7}}{(1+t)^8}\space_2F_1(1,\frac{3}{\alpha}-6;\frac{3}{\alpha}-5;-t) \space dt,
$$

in which $2 \leq \alpha \leq 4$.
I'm not sure how to approach this problem, and I am not particularly well versed (if at all) in hypergeometric functions, so if anyone can give me some advice or help me solve this, I would be very grateful!

Edit: The first term in the integral, before the hypergeometric function, is easily integrable. I know that hypergeometric functions integrate pretty easily, also. My problem is the product of the two here.

Edit 2: Perhaps I should add, the integral comes from first solving
$$
\left(\frac{3}{\alpha}-6\right)\int^\infty_0 \frac{ t^{\frac{2}{\alpha} -1}}{(1+t)^8}\left(\int_0^t \frac{t'^{\frac{3}{\alpha}-7}}{(1+t')}dt'\right)dt.
$$

Best Answer

We have \begin{align*} & \int_0^{ + \infty } {\frac{{t^b }}{{(1 + t)^c }}{}_2F_1 (1,a;a + 1; - t)dt} = \int_0^{ + \infty } {\frac{{t^b }}{{(1 + t)^{c + 1} }}{}_2F_1\!\left( {1,1;a + 1; \frac{t}{{1 + t}}} \right)dt} \\ & = \Gamma (a + 1)\sum\limits_{n = 0}^\infty { \frac{{n!}}{{\Gamma (a + 1 + n)}}\int_0^{ + \infty } {\frac{{t^{b + n} }}{{(1 + t)^{c + 1 + n} }}dt} } \\ & = \Gamma (a + 1)\Gamma (c - b)\sum\limits_{n = 0}^\infty { \frac{{n!\Gamma (b + 1 + n)}}{{\Gamma (a + 1 + n)\Gamma (c + 1 + n)}}} \\ & = \frac{{\Gamma (b + 1)\Gamma (c - b)}}{{\Gamma (c + 1)}}{}_3F_2 (1,1,b + 1;a + 1,c + 1; 1) \end{align*} provided that $ - 1 < \text{Re}( b) < \min(\text{Re}(c),\text{Re}(a)+\text{Re}(c)-1)$.

Related Question