Combinatorics – Simplifying Binomial Sum for Bridge Deals with Specific Voids

binomial-coefficientscard-gamescombinatorial-proofscombinatoricssummation

While trying to get an expression for the number of deals from a generalised bridge deck with nobody being void in any suit I encountered the following subproblem.

From a generalised bridge deck with $r$ ranks instead of just $13$ deal four hands of $r$ cards each. How many deals $A(r)$ are there where

  • South is void in $\diamondsuit$ and $\heartsuit$
  • West is void in $\clubsuit$ and $\heartsuit$
  • North is void in $\clubsuit$ and $\diamondsuit$
  • East is unrestricted, though all players may be void in other suits?

$A(r)$ is the coefficient of $(wxyz)^r$ in $((w+z)(x+z)(y+z)(w+x+y+z))^r$ where $wxyz$ correspond to $\clubsuit\diamondsuit\heartsuit\spadesuit$ respectively. I solved this as follows:

  • South picks $a$ spades, West picks $b$ spades and North picks $c$ spades in one of $\binom r{a,b,c,r-a-b-c}$ ways
  • East gives $r-a$ clubs, $r-b$ diamonds and $r-c$ hearts to South, West, North respectively in one of $\binom ra\binom rb\binom rc$ ways; the rest of the deal is forced

Thus
$$A(r)=\sum_{a,b,c}\binom ra\binom rb\binom rc\binom r{a,b,c,r-a-b-c}$$
which after applying Vandermonde's identity to $c$ followed by shuffling binomials becomes the double sum over all $a,b$
$$A(r)=\sum_{a,b}\binom ra^2\binom ab^2\binom{r+b}a$$
But when I computed the terms and compared to the OEIS I found a match with A290575, with a much simpler formula
$$B(r)=\sum_{k=0}^r\binom rk^2\binom{2k}r^2$$
and I cannot prove that these two binomial sums are equal.

How can I show that $A=B$, preferably (but definitely not necessarily) with a combinatorial proof? I know of Zeilberger's algorithm but don't have access to Maple.

Best Answer

The following holonomic proof follows Peter Paule and Carsten Schneider's 2024 report Creative Telescoping for Hypergeometric Double Sums, and was generated using their software.

Denote the inner sum $$f(r,a)=\sum_{b=0}^a\binom ab^2\binom{r+b}a=\sum_{b=0}^as(r,a,b)$$ and compute two recurrences for it:

In[1]:= << RISC`fastZeil`
<< Downloads/Sigma.m

In[5]:= sd = Binomial[a, b]^2 Binomial[r + b, a];
prerod = Zb[sd, {b, 0, a}, a];
rod = ReleaseHold[prerod[[1]]] /. SUM -> f

Out[5]= -(1 + a)^2 f[a] - (3 + 2 a) (1 + 2 r) f[1 + a] + (2 + a)^2 f[2 + a] == 0

In[7]:= {r0, r1, r2} = FunctionExpand[{sd, (sd /. r -> r + 1), (sd /. a -> a + 1)}/sd];
prehook = Gosper[sd, {b, 0, a}, Parameterized -> {r0, r1, r2}];
hook = ReleaseHold[prehook[[1, 1, 1]]] == 
   0 /. {DisplayForm[SubscriptBox["F", "0"]][b] -> f[a], 
   DisplayForm[SubscriptBox["F", "1"]][b] -> f[r + 1, a], 
   DisplayForm[SubscriptBox["F", "2"]][b] -> f[a + 1]}

Out[7]= (-1 - a^2 - 2 r + 2 a r - 2 r^2) f[a] - (1 + a)^2 f[1 + a] + 
  2 (1 + r)^2 f[1 + r, a] == 0

$$(a+1)^2f(r,a)+(2a+3)(2r+1)f(r,a+1)-(a+2)^2f(r,a+2)=0$$ $$2(r+1)^2f(r+1,a)-(a^2-2ar+2r^2+2r+1)f(r,a)-(a+1)^2f(r,a+1)=0$$ The first recurrence has certificate (obtained using Prove[]) $$g(r,a,b)=\frac{(a+1)b^2(b-a+r)(2a^2-3ab-3ar+5a+b^2+2br-4b-6r+2)}{(b-a-2)^2(b-a-1)^2}s(r,a,b)$$ in the sense that the following telescoping equation holds: $$(a+1)^2s(r,a,b)+(2a+3)(2r+1)s(r,a+1,b)-(a+2)^2s(r,a+2,b)=g(r,a,b+1)-g(r,a,b)$$ Dividing both sides by $s(r,a,b)$ results in an easily verifiable rational function identity. In exactly the same manner the second recurrence is certified by $$g(r,a,b)=-\frac{b^2(a^2-ab-3ar-a+2br+b-3r-2)}{(a-b+1)^2}s(r,a,b)$$ Using these two recurrences we now compute one for $A(r)$:

In[9]:= CreativeTelescoping[
 SigmaSum[Binomial[r, a]^2 f[a], {a, 0, r}], r, {{rod, f[a]}}, hook]

Out[9]= {{(1 + r)^3, -(1/4) (3 + 2 r) (7 + 9 r + 3 r^2), 
  1/16 (2 + 
     r)^3, ((80 + 8 a - 206 a^2 + 206 a^3 - 104 a^4 - 10 a^5 + 
        10 a^6 + 456 r + 160 a r - 1095 a^2 r + 843 a^3 r - 
        214 a^4 r - 25 a^5 r + 7 a^6 r + 1020 r^2 + 658 a r^2 - 
        2182 a^2 r^2 + 1172 a^3 r^2 - 160 a^4 r^2 - 12 a^5 r^2 + 
        1158 r^3 + 1114 a r^3 - 2054 a^2 r^3 + 696 a^3 r^3 - 
        44 a^4 r^3 + 708 r^4 + 916 a r^4 - 924 a^2 r^4 + 
        152 a^3 r^4 + 222 r^5 + 364 a r^5 - 160 a^2 r^5 + 28 r^6 + 
        56 a r^6) f[a] Binomial[r, a]^2)/(32 (-2 + a - r)^2 (-1 + a - r)^2) + ((1 + 
        a)^2 (-80 + 152 a - 98 a^2 - 10 a^3 + 10 a^4 - 296 r + 
        448 a r - 213 a^2 r - 5 a^3 r + 7 a^4 r - 428 r^2 + 
        486 a r^2 - 156 a^2 r^2 + 2 a^3 r^2 - 302 r^3 + 230 a r^3 - 
        38 a^2 r^3 - 104 r^4 + 40 a r^4 - 14 r^5) f[1 + a] Binomial[r, a]^2)/(32 (-2 + a - r)^2 (-1 + a - r)^2)}}

Call the gnarly fourth element of the output $h(r,a)$: $$ \frac{\binom ra^2}{32(r-a+2)^2(r-a+1)^2} \left(\begin{bmatrix} 80 & 8 & -206 & 206 & -104 & -10 & 10 \\ 456 & 160 & -1095 & 843 & -214 & -25 & 7 \\ 1020 & 658 & -2182 & 1172 & -160 & -12 \\ 1158 & 1114 & -2054 & 696 & -44 \\ 708 & 916 & -924 & 152 \\ 222 & 364 & -160 \\ 28 & 56 \end{bmatrix}f(r,a) + (1+a)^2\begin{bmatrix} -80 & 152 & -98 & -10 & 10 \\ -296 & 448 & -213 & -5 & 7 \\ -428 & 486 & -156 & 2 \\ -302 & 230 & -38 \\ -104 & 40 \\ -14 \end{bmatrix}f(r,a+1)\right)$$ The matrices are shorthand for polynomials whose $r^ia^j$ coefficient is $a_{ij}$, using 0-indexing. With the help of the two smaller recurrences we can verify $$(r+1)^3\binom ra^2f(r,a)-\frac14(2r+3)(3r^2+9r+7)\binom{r+1}a^2f(r+1,a)+\frac1{16}(r+2)^3\binom{r+2}a^2f(r+2,a)=h(r,a+1)-h(r,a)$$ which telescopes to $$(r+1)^3A(r)-\frac14(2r+3)(3r^2+9r+7)A(r+1)+\frac1{16}(r+2)^3A(r+2)=0$$ But $B(r)$ satisfies the same recurrence, and the first two terms of $A(r)$ and $B(r)$ agree. This proves $A=B$.