Simplify integral of exponential functions using the method of completing the square

calculuscompleting-the-squareintegration

How can I simplify

$ 1 – \frac{1}{\sqrt{2\pi}\sigma}\int^{\infty}_{-\infty}e^{-kw}e^{\frac{-(w-\mu)^{2}}{2\sigma^{2}}}dw$

using the method of completing the square? I know that the answer must be

$ 1 – e^{- (k\mu – \frac{k^2\sigma^2}{2})}$

and that it must therefore probably involve the Gaussian integral at some point, but I just can't see what the intermediate steps would be.

Best Answer

Let us foccus on the exponents. Multiplying out the squared brackets and adding the exponent $-kw$.

$$\frac{-(w^2-2w\mu+\mu^2)}{2\sigma^2}-kw\frac{2\sigma^2}{2\sigma^2}$$

$$\frac{-w^2+2w\mu-\mu^2}{2\sigma^2}-kw\frac{2\sigma^2}{2\sigma^2}$$

Collecting terms with the variable $w$

$$\frac{-w^2+(2\mu-2\sigma^2k)w}{2\sigma^2}-\frac{\mu^2}{2\sigma^2}$$

Completing the square

$$\frac{-w^2+(2\mu-2\sigma^2k)w-(\mu-\sigma^2k)^2}{2\sigma^2}-\frac{\mu^2-(\mu-\sigma^2k)^2}{2\sigma^2}$$

$$\frac{-(w-(\mu-\sigma^2k))^2}{2\sigma^2}-\frac{\mu^2-(\mu-\sigma^2k)^2}{2\sigma^2}$$

$$\frac{-(w-(\mu-\sigma^2k))^2}{2\sigma^2}-\frac{\mu^2}{2\sigma^2}+\frac{\mu^2-2\mu\sigma^2k+\sigma^4k^2}{2\sigma^2}$$

$$\frac{-(w-(\mu-\sigma^2k))^2}{2\sigma^2}\underbrace{-\frac{\mu^2}{2\sigma^2}+\frac{\mu^2}{2\sigma^2}}_{=0}+\frac{-2\mu\sigma^2k+\sigma^4k^2}{2\sigma^2}$$

Cancelling out $\sigma^2$ at the last fraction

$$\frac{-(w-(\mu-\sigma^2k))^2}{2\sigma^2}+\frac{-2\mu k+\sigma^2k^2}{2}$$

$$\frac{-(w-(\mu-\sigma^2k))^2}{2\sigma^2}-\mu k+\frac{\sigma^2k^2}{2}$$

Now we integrate

$$e^{-\mu k+\frac{\sigma^2k^2}{2}}\cdot \underbrace{\frac{1}{\sqrt{2\pi}\sigma}\cdot \int_{-\infty}^{\infty} e^{\frac{-(w-(\mu-\sigma^2k))^2}{2\sigma^2}} \, dw}_{=1}$$

Related Question