Signed Permutations and Coxeter Groups

coxeter-groupsfinite-groupsgroup-theory

Context: (most of which is pulled from comments and answers to https://mathoverflow.net/questions/431964/signed-permutations-and-operatornameson)

The diagonal subgroup $ C_2^n $ of $ O_n(\mathbb{Z}) $ is a generated by reflections. The permutation subgroup $ S_n $ of $ O_n(\mathbb{Z}) $ is also generated by reflections. Thus the subgroup of $ O_n(\mathbb{Z}) $ consisting of all signed permutation matrices, also known as the Weyl group $ W(B_n) $, is also generated by reflections.

Viewing these statements abstractly we have that $ C_2^n $ is a Coxeter group, $ S_n $ is a Coxeter group and the group of signed permutation matrices $ W(B_n) $ (which has shape $ 2^{n}:S_n $) is also a Coxeter group.

It is also known that $ W(D_n) $, the index $ 2 $ normal subgroup of $ W(B_n) $ consisting of monomial matrices with an even number of sign changes, is a Coxeter group. It has shape $ 2^{n-1}:S_n $.

What about the subgroup of $ W(B_n) $ of matrices with determinant $ +1 $? We will denote this subgroup of $ SO(n) $ by $ W_n $. This is an a priori different index $ 2 $ normal subgroup of $ W(B_n) $ than $ W(D_n) $. $ W_n $ has shape $ 2^{n-1}.S_n $. Although $ W_n $, for $ n \geq 3 $, is generated by involutions (using blocks of the form $ \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} $) it is not clear that $ W_n $ is a Coxeter group.

As previously stated, it is the case that $ C_2^n,S_n,W(B_n),W(D_n) $ are all Coxeter groups. But what about $ W_n $?

Question:

Is it the case that $ W_n \cong W(D_n) $ if and only if $ n $ is odd? And moreover is it the case that $ W_n $ is a Coxeter group if and only if $ n $ is odd?

Best Answer

When $n$ is odd, the permutation module $2^n$ for $S_n$ splits as $2^1 \oplus 2^{n-1}$, with $2^{n-1}$ irreducible. It follows easily from Shapiro's Lemma that $H^k(S_n,2^n) \cong H^k(S_{n-1},2^1)$ for all $k \ge 0$, and so $H^2(S_n,2^{n-1})=0$, so there is no non-split extension of $2^{n-1}$ by $S_n$, and we must have $W(D_n) \cong W_n \cong 2^{n-1}:S_n$.

When $n$ is even, the module $2^n$ is uniserial with factors $2^1$, $2^{n-2}$, $2^1$, and $W(D_n)$ and $W_n$ are both extensions of $2^{n-1}$ by $S_n$, where the $2^{n-1}$ here is uniserial with factors $2^1$ and $2^{n-2}$.

In that case $W_n$ is a nonsplit extension of $2^{n-1}$ by $S_n$, so it is not isomorphic to $W(D_n)$. I think this can be shown by a more complicated cohomological calculation, but I would need to think about it some more.

Related Question