Showing that $\|x \| = \sup_{y \neq 0} \frac{|\langle x,y \rangle|}{\|y\|}$

functional-analysishilbert-spacesinner-productsnormed-spacesreal-analysis

Exercise :

Let $H$ be an inner product space and $x \in H$. Show that :
$$\|x \| = \sup_{y \neq 0} \frac{|\langle x,y \rangle|}{\|y\|}$$

Attempt :

If $x=0$ then the equality follows imidiatelly as an equality with respect to $0$. Let it now be that $x \neq 0$. For $y \in H$ with $y \neq 0$, by the Cauchy-Schwarz inequality, it is :
$$\langle x,y \rangle^2 \leq \langle x,x \rangle \cdot \langle y,y \rangle \Leftrightarrow |\langle x,x \rangle|\leq \langle x,x \rangle^{1/2} \cdot \langle y,y \rangle^{1/2} = \|x\|\cdot\|y\|$$

Thus, it also holds that :

$$\|x\| \geq \sup_{y \neq 0} \frac{|\langle x,y \rangle|}{\|y\|}$$

How would I show the other direction of the inequality, though, to prove that it must be equal to it ?

I thought about expressing $\|x\|$ as

$$\|x\| = \bigg\langle x,\frac{x}{\|x\|}\bigg\rangle$$

but can't see anything obvious.

Any tips will be greatly appreciated.

Best Answer

In the case $x\neq 0$ we have $$ \Vert x \Vert = \frac{1}{\Vert x \Vert} \Vert x \Vert^2 = \frac{1}{\Vert x \Vert} \langle x, x \rangle = \frac{\vert \langle x, x \rangle \vert}{\Vert x \Vert} \leq \sup_{y\neq 0} \frac{\vert \langle x, y \rangle \vert}{\Vert y \Vert} $$

Related Question