Showing that $\sum_{k=0}^{n}{m+k\choose m}^{-1}=\frac{m}{m-1}\left[1-{m+n\choose m-1}^{-1}\right],m>1.$

beta functionbinomial theorembinomial-coefficientssequences-and-seriessummation

Let $$S_{m,n}=\sum_{k=0}^{n}{m+k\choose m}^{-1}$$
Then $S_{0,n}=n+1, S_{1,n}=H_{n+1}.$

For $m>1$, let us consider the integral $$I_{m,k}=\int_{0}^{1} (1-x^{1/m})^k dx$$
which by using $x=\sin^{2m} t$ and Beta function, can be expressed as
$$I_{m,k}=2m\int_{0}^{\frac{\pi}{2}}\sin^{2m-1} t ~ \cos^{2k+1} t~ dt= \frac{\Gamma(m+1) \Gamma(k+1)}{\Gamma(m+k+1)}={m+k\choose m}^{-1}.$$
Next, we can write $$S_{m,n}=\sum_{k=0}^{n} I_{m,k}=\int_{0}^{1}dx \sum_{k=0}^n (1-x^{1/m})^k=\int_{0}^{1} x^{-1/m}[1-(1-x^{1/m})^{n+1}]~ dx.$$
$$\implies S_{m,n}=\frac{m}{m-1}-\int_0^1 x^{-1/m}(1-x^{1/m})^{n+1} dx$$

Again by using $x=\sin^{2m} t$ and Beta-integral, we get
$$S_{m.n}=\frac{m}{m-1}-2m\int_{0}^{\frac{\pi}{2}} \sin^{2m-3}~\cos^{2n+3} ~dt=\frac{m}{m-1}-\frac{\Gamma(m)\Gamma(n+2)}{\Gamma(m+m+1)}. $$
Upon simplification we have $$S_{m,n}=\frac{m}{m-1}\left[1-{m+n\choose m-1}^{-1}\right],m>1.$$

The question us how else this result can be obtained?

Best Answer

We seek to show that for $m\gt 1$

$$S_{m,n} = \sum_{k=0}^n {m+k\choose m}^{-1} = \frac{m}{m-1} \left[1-{m+n\choose m-1}^{-1}\right].$$

We have for the LHS using an Iverson bracket:

$$[w^n] \frac{1}{1-w} \sum_{k\ge 0} {m+k\choose m}^{-1} w^k.$$

Recall from MSE 4316307 that with $1\le k\le n$

$${n\choose k}^{-1} = k [z^n] \log\frac{1}{1-z} (z-1)^{n-k}.$$

We get with $m\ge 1$ as per requirement on $k$

$$m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m+1}} \log\frac{1}{1-z} [w^n] \frac{1}{1-w} \sum_{k\ge 0} w^k z^{-k} (z-1)^k \\ = m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m+1}} \log\frac{1}{1-z} [w^n] \frac{1}{1-w} \frac{1}{1-w(z-1)/z} \\ = m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m}} \log\frac{1}{1-z} \; \underset{w}{\mathrm{res}} \; \frac{1}{w^{n+1}} \frac{1}{1-w} \frac{1}{z-w(z-1)}.$$

Now residues sum to zero and the residue at infinity in $w$ is zero by inspection, so we may evaluate by taking minus the residue at $w=1$ and minus the residue at $w=z/(z-1).$ For $w=1$ start by writing

$$- m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m}} \log\frac{1}{1-z} \; \underset{w}{\mathrm{res}} \; \frac{1}{w^{n+1}} \frac{1}{w-1} \frac{1}{z-w(z-1)}.$$

The residue then leaves

$$- m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m}} \log\frac{1}{1-z} = -m \frac{1}{m-1}.$$

On flipping the sign we get $m/(m-1)$ which is the first term so we are on the right track. Note that when $m=1$ this term will produce zero. For the residue at $w=z/(1-z)$ we write

$$- m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m}} \frac{1}{z-1} \log\frac{1}{1-z} \; \underset{w}{\mathrm{res}} \; \frac{1}{w^{n+1}} \frac{1}{1-w} \frac{1}{w-z/(z-1)}.$$

Doing the evaluation of the residue yields

$$- m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m}} \frac{1}{z-1} \log\frac{1}{1-z} \frac{(z-1)^{n+1}}{z^{n+1}} \frac{1}{1-z/(z-1)} \\ = m \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{m+n+1}} \log\frac{1}{1-z} (z-1)^{n+1} \\ = m [z^{m+n}] \log\frac{1}{1-z} (z-1)^{n+1}.$$

Using the cited formula a second time we put $n := m+n$ and $k := m-1$ to get

$$m \frac{1}{m-1} {m+n\choose m-1}^{-1}.$$

On flipping the sign we get the second term as required and we have the claim.

Remark. In the above we have $m\gt 1.$ We get for $m=1$

$$[z^{n+1}] \log\frac{1}{1-z} (z-1)^{n+1} = \; \underset{z}{\mathrm{res}} \; \frac{1}{z^{n+2}} \log\frac{1}{1-z} (z-1)^{n+1}.$$

Now we put $z/(z-1) = v$ so that $z = v/(v-1)$ and $dz = -1/(v-1)^2 \; dv$ to get

$$- \; \underset{v}{\mathrm{res}} \; \frac{1}{v^{n+2}} \log\frac{1}{1-v/(v-1)} (v-1) \frac{1}{(1-v)^2} \\ = \; \underset{v}{\mathrm{res}} \; \frac{1}{v^{n+2}} \frac{1}{1-v} \log(1-v).$$

On flipping the sign we obtain

$$\; \underset{v}{\mathrm{res}} \; \frac{1}{v^{n+2}} \frac{1}{1-v} \log\frac{1}{1-v} = H_{n+1},$$

again as claimed. This particular value follows by inspection, of course.