Showing Holder’s inequality holds for $p=\infty$ and $q=1$

functional-analysisholder-inequalitysolution-verification

We're asked to show that Holder's inequality (for the case when $1/p + 1/q = 1$) holds for the case when $p=\infty$ and $q=1$. The inequality is given to us in the following form.

$\sum\limits_{i=0}^\infty \vert a_ix_i \vert \leq \vert \vert a \vert \vert_q \vert \vert x \vert \vert_p$

Here's my proof and I'd like to make sure that the logic is sound.

$$
\begin{align*}
\sum \vert a_i x_i \vert &\leq \vert \vert a \vert \vert_\infty \vert \vert x \vert \vert_1 &&\text{plug in variables} \\
&= \max(\vert a \vert) \vert \vert a \vert \vert_1 &&\text{value of infinite norm}
\end{align*}
$$

Now divide by $\max(\vert a \vert)$
$$
\sum \cfrac{\vert a_i x_i \vert}{\max(\vert a \vert)} \leq \vert \vert x \vert \vert_1
$$

We know that $\sum\limits_{i=o}^\infty \cfrac{\vert a_i x_i \vert}{\max(\vert a \vert)} \leq \sum \vert x_i \vert $ because $\cfrac{|a_i|}{\max(|a|)} \leq 1\, \forall a_i \in a \in \ell_\infty $.

Now we have that $\sum \vert x_i \vert \leq \vert \vert x \vert \vert_1$. These are, in fact, equal to each other. So we see that our case when $p=\infty$ and $q=1$ holds.


If there something I ought to do to make the proof easier to understand, please let me know.

Best Answer

The proof is not completely correct because the $\|\cdot\|_{\infty}$ norm is not the maximum of the absolute value of the sequence, but the supremum. For example, if $a_n=1-\frac{1}{n}$, then $\|a\|_{\infty}=1$, but there is no maximum.

To prove the inequality note that for every $n\geq 1$, $$|a_nx_n|=|a_n|\cdot |x_n|\leq\sup_n|a_n|\cdot |x_n|=\|a\|_{\infty}|x_n| $$

Therefore, for every $N$,

$$\sum_{n=1}^N|a_nx_n|\leq\|a\|_{\infty}\sum_{n=1}^N|x_n|\leq\|a\|_{\infty}\|x\|_1$$ Letting $N\to\infty$ the desired result follows.

Related Question